ardupilot/ArduPlane/altitude.cpp

892 lines
29 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "Plane.h"
/*
altitude handling routines. These cope with both barometric control
and terrain following control
*/
/*
adjust altitude target depending on mode
*/
void Plane::adjust_altitude_target()
{
control_mode->update_target_altitude();
}
void Plane::check_home_alt_change(void)
{
int32_t home_alt_cm = ahrs.get_home().alt;
if (home_alt_cm != auto_state.last_home_alt_cm && hal.util->get_soft_armed()) {
// cope with home altitude changing
const int32_t alt_change_cm = home_alt_cm - auto_state.last_home_alt_cm;
if (next_WP_loc.terrain_alt) {
/*
next_WP_loc for terrain alt WP are quite strange. They
have terrain_alt=1, but also have relative_alt=0 and
have been calculated to be relative to home. We need to
adjust for the change in home alt
*/
next_WP_loc.alt += alt_change_cm;
}
// reset TECS to force the field elevation estimate to reset
TECS_controller.reset();
}
auto_state.last_home_alt_cm = home_alt_cm;
}
/*
setup for a gradual glide slope to the next waypoint, if appropriate
*/
void Plane::setup_glide_slope(void)
{
// establish the distance we are travelling to the next waypoint,
// for calculating out rate of change of altitude
auto_state.wp_distance = current_loc.get_distance(next_WP_loc);
auto_state.wp_proportion = current_loc.line_path_proportion(prev_WP_loc, next_WP_loc);
TECS_controller.set_path_proportion(auto_state.wp_proportion);
update_flight_stage();
/*
work out if we will gradually change altitude, or try to get to
the new altitude as quickly as possible.
*/
switch (control_mode->mode_number()) {
case Mode::Number::RTL:
case Mode::Number::AVOID_ADSB:
case Mode::Number::GUIDED:
/* glide down slowly if above target altitude, but ascend more
rapidly if below it. See
https://github.com/ArduPilot/ardupilot/issues/39
*/
if (above_location_current(next_WP_loc)) {
set_offset_altitude_location(prev_WP_loc, next_WP_loc);
} else {
reset_offset_altitude();
}
break;
case Mode::Number::AUTO:
//climb without doing glide slope if option is enabled
if (!above_location_current(next_WP_loc) && plane.flight_option_enabled(FlightOptions::IMMEDIATE_CLIMB_IN_AUTO)) {
reset_offset_altitude();
break;
}
// we only do glide slide handling in AUTO when above 20m or
// when descending. The 20 meter threshold is arbitrary, and
// is basically to prevent situations where we try to slowly
// gain height at low altitudes, potentially hitting
// obstacles.
if (adjusted_relative_altitude_cm() > 2000 || above_location_current(next_WP_loc)) {
set_offset_altitude_location(prev_WP_loc, next_WP_loc);
} else {
reset_offset_altitude();
}
break;
default:
reset_offset_altitude();
break;
}
}
/*
return RTL altitude as AMSL cm
*/
int32_t Plane::get_RTL_altitude_cm() const
{
if (g.RTL_altitude < 0) {
return current_loc.alt;
}
return g.RTL_altitude*100 + home.alt;
}
/*
return relative altitude in meters (relative to terrain, if available,
or home otherwise)
*/
float Plane::relative_ground_altitude(bool use_rangefinder_if_available, bool use_terrain_if_available)
{
#if AP_MAVLINK_MAV_CMD_SET_HAGL_ENABLED
float height_AGL;
// use external HAGL if available
if (get_external_HAGL(height_AGL)) {
return height_AGL;
}
#endif // AP_MAVLINK_MAV_CMD_SET_HAGL_ENABLED
#if AP_RANGEFINDER_ENABLED
if (use_rangefinder_if_available && rangefinder_state.in_range) {
return rangefinder_state.height_estimate;
}
#endif
#if HAL_QUADPLANE_ENABLED && AP_RANGEFINDER_ENABLED
if (use_rangefinder_if_available && quadplane.in_vtol_land_final() &&
rangefinder.status_orient(ROTATION_PITCH_270) == RangeFinder::Status::OutOfRangeLow) {
// a special case for quadplane landing when rangefinder goes
// below minimum. Consider our height above ground to be zero
return 0;
}
#endif
#if AP_TERRAIN_AVAILABLE
float altitude;
if (use_terrain_if_available &&
terrain.status() == AP_Terrain::TerrainStatusOK &&
terrain.height_above_terrain(altitude, true)) {
return altitude;
}
#endif
#if HAL_QUADPLANE_ENABLED
if (quadplane.in_vtol_land_descent() &&
!quadplane.landing_with_fixed_wing_spiral_approach()) {
// when doing a VTOL landing we can use the waypoint height as
// ground height. We can't do this if using the
// LAND_FW_APPROACH as that uses the wp height as the approach
// height
return height_above_target();
}
#endif
return relative_altitude;
}
// Helper for above method using terrain if the vehicle is currently terrain following
float Plane::relative_ground_altitude(bool use_rangefinder_if_available)
{
#if AP_TERRAIN_AVAILABLE
return relative_ground_altitude(use_rangefinder_if_available, target_altitude.terrain_following);
#else
return relative_ground_altitude(use_rangefinder_if_available, false);
#endif
}
/*
set the target altitude to the current altitude. This is used when
setting up for altitude hold, such as when releasing elevator in
CRUISE mode.
*/
void Plane::set_target_altitude_current(void)
{
// record altitude above sea level at the current time as our
// target altitude
target_altitude.amsl_cm = current_loc.alt;
// reset any glide slope offset
reset_offset_altitude();
#if AP_TERRAIN_AVAILABLE
// also record the terrain altitude if possible
float terrain_altitude;
if (terrain_enabled_in_current_mode() && terrain.height_above_terrain(terrain_altitude, true) && !terrain_disabled()) {
target_altitude.terrain_following = true;
target_altitude.terrain_alt_cm = terrain_altitude*100;
} else {
// if terrain following is disabled, or we don't know our
// terrain altitude when we set the altitude then don't
// terrain follow
target_altitude.terrain_following = false;
}
#endif
}
/*
set the target altitude to the current altitude, with ALT_OFFSET adjustment
*/
void Plane::set_target_altitude_current_adjusted(void)
{
set_target_altitude_current();
// use adjusted_altitude_cm() to take account of ALTITUDE_OFFSET
target_altitude.amsl_cm = adjusted_altitude_cm();
}
/*
set target altitude based on a location structure
*/
void Plane::set_target_altitude_location(const Location &loc)
{
target_altitude.amsl_cm = loc.alt;
if (loc.relative_alt) {
target_altitude.amsl_cm += home.alt;
}
#if AP_TERRAIN_AVAILABLE
if (target_altitude.terrain_following_pending) {
/* we didn't get terrain data to init when we started on this
target, retry
*/
setup_terrain_target_alt(next_WP_loc);
}
/*
if this location has the terrain_alt flag set and we know the
terrain altitude of our current location then treat it as a
terrain altitude
*/
float height;
if (loc.terrain_alt && terrain.height_above_terrain(height, true)) {
target_altitude.terrain_following = true;
target_altitude.terrain_alt_cm = loc.alt;
if (!loc.relative_alt) {
// it has home added, remove it
target_altitude.terrain_alt_cm -= home.alt;
}
} else {
target_altitude.terrain_following = false;
}
#endif
}
/*
return relative to home target altitude in centimeters. Used for
altitude control libraries
*/
int32_t Plane::relative_target_altitude_cm(void)
{
#if AP_TERRAIN_AVAILABLE
float relative_home_height;
if (target_altitude.terrain_following &&
terrain.height_relative_home_equivalent(target_altitude.terrain_alt_cm*0.01f,
relative_home_height, true)) {
// add lookahead adjustment the target altitude
target_altitude.lookahead = lookahead_adjustment();
relative_home_height += target_altitude.lookahead;
#if AP_RANGEFINDER_ENABLED
// correct for rangefinder data
relative_home_height += rangefinder_correction();
#endif
// we are following terrain, and have terrain data for the
// current location. Use it.
return relative_home_height*100;
}
#endif
int32_t relative_alt = target_altitude.amsl_cm - home.alt;
relative_alt += mission_alt_offset()*100;
#if AP_RANGEFINDER_ENABLED
relative_alt += rangefinder_correction() * 100;
#endif
return relative_alt;
}
/*
change the current target altitude by an amount in centimeters. Used
to cope with changes due to elevator in CRUISE or FBWB
*/
void Plane::change_target_altitude(int32_t change_cm)
{
target_altitude.amsl_cm += change_cm;
#if AP_TERRAIN_AVAILABLE
if (target_altitude.terrain_following && !terrain_disabled()) {
target_altitude.terrain_alt_cm += change_cm;
}
#endif
}
/*
change target altitude by a proportion of the target altitude offset
(difference in height to next WP from previous WP). proportion
should be between 0 and 1.
When proportion is zero we have reached the destination. When
proportion is 1 we are at the starting waypoint.
Note that target_altitude is setup initially based on the
destination waypoint
*/
void Plane::set_target_altitude_proportion(const Location &loc, float proportion)
{
set_target_altitude_location(loc);
proportion = constrain_float(proportion, 0.0f, 1.0f);
change_target_altitude(-target_altitude.offset_cm*proportion);
//rebuild the glide slope if we are above it and supposed to be climbing
if(g.glide_slope_threshold > 0) {
if(target_altitude.offset_cm > 0 && calc_altitude_error_cm() < -100 * g.glide_slope_threshold) {
set_target_altitude_location(loc);
set_offset_altitude_location(current_loc, loc);
change_target_altitude(-target_altitude.offset_cm*proportion);
//adjust the new target offset altitude to reflect that we are partially already done
if(proportion > 0.0f)
target_altitude.offset_cm = ((float)target_altitude.offset_cm)/proportion;
}
}
}
/*
constrain target altitude to be between two locations. Used to
ensure we stay within two waypoints in altitude
*/
void Plane::constrain_target_altitude_location(const Location &loc1, const Location &loc2)
{
if (loc1.alt > loc2.alt) {
target_altitude.amsl_cm = constrain_int32(target_altitude.amsl_cm, loc2.alt, loc1.alt);
} else {
target_altitude.amsl_cm = constrain_int32(target_altitude.amsl_cm, loc1.alt, loc2.alt);
}
}
/*
return error between target altitude and current altitude
*/
int32_t Plane::calc_altitude_error_cm(void)
{
#if AP_TERRAIN_AVAILABLE
float terrain_height;
if (target_altitude.terrain_following &&
terrain.height_above_terrain(terrain_height, true)) {
return target_altitude.lookahead*100 + target_altitude.terrain_alt_cm - (terrain_height*100);
}
#endif
return target_altitude.amsl_cm - adjusted_altitude_cm();
}
/*
check for cruise_alt_floor and fence min/max altitude
*/
void Plane::check_fbwb_altitude(void)
{
float max_alt_cm = 0.0;
float min_alt_cm = 0.0;
bool should_check_max = false;
bool should_check_min = false;
#if AP_FENCE_ENABLED
// taking fence max and min altitude (with margin)
const uint8_t enabled_fences = plane.fence.get_enabled_fences();
if ((enabled_fences & AC_FENCE_TYPE_ALT_MIN) != 0) {
min_alt_cm = plane.fence.get_safe_alt_min()*100.0;
should_check_min = true;
}
if ((enabled_fences & AC_FENCE_TYPE_ALT_MAX) != 0) {
max_alt_cm = plane.fence.get_safe_alt_max()*100.0;
should_check_max = true;
}
#endif
if (g.cruise_alt_floor > 0) {
// FBWB min altitude exists
min_alt_cm = MAX(min_alt_cm, plane.g.cruise_alt_floor*100.0);
should_check_min = true;
}
if (!should_check_min && !should_check_max) {
return;
}
//check if terrain following (min and max)
#if AP_TERRAIN_AVAILABLE
if (target_altitude.terrain_following) {
// set our target terrain height to be at least the min set
if (should_check_max) {
target_altitude.terrain_alt_cm = MIN(target_altitude.terrain_alt_cm, max_alt_cm);
}
if (should_check_min) {
target_altitude.terrain_alt_cm = MAX(target_altitude.terrain_alt_cm, min_alt_cm);
}
return;
}
#endif
if (should_check_max) {
target_altitude.amsl_cm = MIN(target_altitude.amsl_cm, home.alt + max_alt_cm);
}
if (should_check_min) {
target_altitude.amsl_cm = MAX(target_altitude.amsl_cm, home.alt + min_alt_cm);
}
}
/*
reset the altitude offset used for glide slopes
*/
void Plane::reset_offset_altitude(void)
{
target_altitude.offset_cm = 0;
}
/*
reset the altitude offset used for glide slopes, based on difference
between altitude at a destination and a specified start altitude. If
destination is above the starting altitude then the result is
positive.
*/
void Plane::set_offset_altitude_location(const Location &start_loc, const Location &destination_loc)
{
target_altitude.offset_cm = destination_loc.alt - start_loc.alt;
#if AP_TERRAIN_AVAILABLE
/*
if this location has the terrain_alt flag set and we know the
terrain altitude of our current location then treat it as a
terrain altitude
*/
float height;
if (destination_loc.terrain_alt &&
target_altitude.terrain_following &&
terrain.height_above_terrain(height, true)) {
target_altitude.offset_cm = target_altitude.terrain_alt_cm - (height * 100);
}
#endif
if (flight_stage != AP_FixedWing::FlightStage::LAND) {
// if we are within GLIDE_SLOPE_MIN meters of the target altitude
// then reset the offset to not use a glide slope. This allows for
// more accurate flight of missions where the aircraft may lose or
// gain a bit of altitude near waypoint turn points due to local
// terrain changes
if (g.glide_slope_min <= 0 ||
labs(target_altitude.offset_cm)*0.01f < g.glide_slope_min) {
target_altitude.offset_cm = 0;
}
}
}
/*
return true if current_loc is above loc. Used for glide slope
calculations.
"above" is simple if we are not terrain following, as it just means
the pressure altitude of one is above the other.
When in terrain following mode "above" means the over-the-terrain
current altitude is above the over-the-terrain alt of loc. It is
quite possible for current_loc to be "above" loc when it is at a
lower pressure altitude, if current_loc is in a low part of the
terrain
*/
bool Plane::above_location_current(const Location &loc)
{
#if AP_TERRAIN_AVAILABLE
float terrain_alt;
if (loc.terrain_alt &&
terrain.height_above_terrain(terrain_alt, true)) {
float loc_alt = loc.alt*0.01f;
if (!loc.relative_alt) {
loc_alt -= home.alt*0.01f;
}
return terrain_alt > loc_alt;
}
#endif
float loc_alt_cm = loc.alt;
if (loc.relative_alt) {
loc_alt_cm += home.alt;
}
return current_loc.alt > loc_alt_cm;
}
/*
modify a destination to be setup for terrain following if
TERRAIN_FOLLOW is enabled
*/
void Plane::setup_terrain_target_alt(Location &loc)
{
#if AP_TERRAIN_AVAILABLE
if (terrain_enabled_in_current_mode()) {
if (!loc.change_alt_frame(Location::AltFrame::ABOVE_TERRAIN)) {
target_altitude.terrain_following_pending = true;
return;
}
}
target_altitude.terrain_following_pending = false;
#endif
}
/*
return current_loc.alt adjusted for ALT_OFFSET
This is useful during long flights to account for barometer changes
from the GCS, or to adjust the flying height of a long mission
*/
int32_t Plane::adjusted_altitude_cm(void)
{
return current_loc.alt - (mission_alt_offset()*100);
}
/*
return home-relative altitude adjusted for ALT_OFFSET This is useful
during long flights to account for barometer changes from the GCS,
or to adjust the flying height of a long mission
*/
int32_t Plane::adjusted_relative_altitude_cm(void)
{
return (relative_altitude - mission_alt_offset())*100;
}
/*
return the mission altitude offset. This raises or lowers all
mission items. It is primarily set using the ALT_OFFSET parameter,
but can also be adjusted by the rangefinder landing code for a
NAV_LAND command if we have aborted a steep landing
*/
float Plane::mission_alt_offset(void)
{
float ret = g.alt_offset;
if (control_mode == &mode_auto &&
(flight_stage == AP_FixedWing::FlightStage::LAND || auto_state.wp_is_land_approach)) {
// when landing after an aborted landing due to too high glide
// slope we use an offset from the last landing attempt
ret += landing.alt_offset;
}
return ret;
}
/*
return the height in meters above the next_WP_loc altitude
*/
float Plane::height_above_target(void)
{
float target_alt = next_WP_loc.alt*0.01;
if (!next_WP_loc.relative_alt) {
target_alt -= ahrs.get_home().alt*0.01f;
}
#if AP_TERRAIN_AVAILABLE
// also record the terrain altitude if possible
float terrain_altitude;
if (next_WP_loc.terrain_alt &&
terrain.height_above_terrain(terrain_altitude, true)) {
return terrain_altitude - target_alt;
}
#endif
return (adjusted_altitude_cm()*0.01f - ahrs.get_home().alt*0.01f) - target_alt;
}
/*
work out target altitude adjustment from terrain lookahead
*/
float Plane::lookahead_adjustment(void)
{
#if AP_TERRAIN_AVAILABLE
int32_t bearing_cd;
int16_t distance;
// work out distance and bearing to target
if (control_mode == &mode_fbwb) {
// there is no target waypoint in FBWB, so use yaw as an approximation
bearing_cd = ahrs.yaw_sensor;
distance = g.terrain_lookahead;
} else if (!reached_loiter_target()) {
bearing_cd = nav_controller->target_bearing_cd();
distance = constrain_float(auto_state.wp_distance, 0, g.terrain_lookahead);
} else {
// no lookahead when loitering
bearing_cd = 0;
distance = 0;
}
if (distance <= 0) {
// no lookahead
return 0;
}
float groundspeed = ahrs.groundspeed();
if (groundspeed < 1) {
// we're not moving
return 0;
}
// we need to know the climb ratio. We use 50% of the maximum
// climb rate so we are not constantly at 100% throttle and to
// give a bit more margin on terrain
float climb_ratio = 0.5f * TECS_controller.get_max_climbrate() / groundspeed;
if (climb_ratio <= 0) {
// lookahead makes no sense for negative climb rates
return 0;
}
// ask the terrain code for the lookahead altitude change
float lookahead = terrain.lookahead(bearing_cd*0.01f, distance, climb_ratio);
if (target_altitude.offset_cm < 0) {
// we are heading down to the waypoint, so we don't need to
// climb as much
lookahead += target_altitude.offset_cm*0.01f;
}
// constrain lookahead to a reasonable limit
return constrain_float(lookahead, 0, 1000.0f);
#else
return 0;
#endif
}
#if AP_RANGEFINDER_ENABLED
/*
correct target altitude using rangefinder data. Returns offset in
meters to correct target altitude. A positive number means we need
to ask the speed/height controller to fly higher
*/
float Plane::rangefinder_correction(void)
{
if (millis() - rangefinder_state.last_correction_time_ms > 5000) {
// we haven't had any rangefinder data for 5s - don't use it
return 0;
}
// for now we only support the rangefinder for landing
bool using_rangefinder = (g.rangefinder_landing && flight_stage == AP_FixedWing::FlightStage::LAND);
if (!using_rangefinder) {
return 0;
}
return rangefinder_state.correction;
}
/*
correct rangefinder data for terrain height difference between
NAV_LAND point and current location
*/
void Plane::rangefinder_terrain_correction(float &height)
{
#if AP_TERRAIN_AVAILABLE
if (!g.rangefinder_landing ||
flight_stage != AP_FixedWing::FlightStage::LAND ||
!terrain_enabled_in_current_mode()) {
return;
}
float terrain_amsl1, terrain_amsl2;
if (!terrain.height_amsl(current_loc, terrain_amsl1) ||
!terrain.height_amsl(next_WP_loc, terrain_amsl2)) {
return;
}
float correction = (terrain_amsl1 - terrain_amsl2);
height += correction;
auto_state.terrain_correction = correction;
#endif
}
/*
update the offset between rangefinder height and terrain height
*/
void Plane::rangefinder_height_update(void)
{
float distance = rangefinder.distance_orient(ROTATION_PITCH_270);
if ((rangefinder.status_orient(ROTATION_PITCH_270) == RangeFinder::Status::Good) && ahrs.home_is_set()) {
if (!rangefinder_state.have_initial_reading) {
rangefinder_state.have_initial_reading = true;
rangefinder_state.initial_range = distance;
}
// correct the range for attitude (multiply by DCM.c.z, which
// is cos(roll)*cos(pitch))
rangefinder_state.height_estimate = distance * ahrs.get_rotation_body_to_ned().c.z;
rangefinder_terrain_correction(rangefinder_state.height_estimate);
// we consider ourselves to be fully in range when we have 10
// good samples (0.2s) that are different by 5% of the maximum
// range from the initial range we see. The 5% change is to
// catch Lidars that are giving a constant range, either due
// to misconfiguration or a faulty sensor
if (rangefinder_state.in_range_count < 10) {
if (!is_equal(distance, rangefinder_state.last_distance) &&
fabsf(rangefinder_state.initial_range - distance) > 0.05f * rangefinder.max_distance_cm_orient(ROTATION_PITCH_270)*0.01f) {
rangefinder_state.in_range_count++;
}
if (fabsf(rangefinder_state.last_distance - distance) > rangefinder.max_distance_cm_orient(ROTATION_PITCH_270)*0.01*0.2) {
// changes by more than 20% of full range will reset counter
rangefinder_state.in_range_count = 0;
}
} else {
rangefinder_state.in_range = true;
bool flightstage_good_for_rangefinder_landing = false;
if (flight_stage == AP_FixedWing::FlightStage::LAND) {
flightstage_good_for_rangefinder_landing = true;
}
#if HAL_QUADPLANE_ENABLED
if (control_mode == &mode_qland ||
control_mode == &mode_qrtl ||
(control_mode == &mode_auto && quadplane.is_vtol_land(plane.mission.get_current_nav_cmd().id))) {
flightstage_good_for_rangefinder_landing = true;
}
#endif
if (!rangefinder_state.in_use &&
flightstage_good_for_rangefinder_landing &&
g.rangefinder_landing) {
rangefinder_state.in_use = true;
gcs().send_text(MAV_SEVERITY_INFO, "Rangefinder engaged at %.2fm", (double)rangefinder_state.height_estimate);
}
}
rangefinder_state.last_distance = distance;
} else {
rangefinder_state.in_range_count = 0;
rangefinder_state.in_range = false;
}
if (rangefinder_state.in_range) {
// If not using terrain data, we expect zero correction when our height above target is equal to our rangefinder measurement
float correction = height_above_target() - rangefinder_state.height_estimate;
#if AP_TERRAIN_AVAILABLE
// if we are terrain following then correction is based on terrain data
float terrain_altitude;
if ((target_altitude.terrain_following || terrain_enabled_in_current_mode()) &&
terrain.height_above_terrain(terrain_altitude, true)) {
correction = terrain_altitude - rangefinder_state.height_estimate;
}
#endif
// remember the last correction. Use a low pass filter unless
// the old data is more than 5 seconds old
uint32_t now = millis();
if (now - rangefinder_state.last_correction_time_ms > 5000) {
rangefinder_state.correction = correction;
rangefinder_state.initial_correction = correction;
if (g.rangefinder_landing) {
landing.set_initial_slope();
}
rangefinder_state.last_correction_time_ms = now;
} else {
rangefinder_state.correction = 0.8f*rangefinder_state.correction + 0.2f*correction;
rangefinder_state.last_correction_time_ms = now;
if (fabsf(rangefinder_state.correction - rangefinder_state.initial_correction) > 30) {
// the correction has changed by more than 30m, reset use of Lidar. We may have a bad lidar
if (rangefinder_state.in_use) {
gcs().send_text(MAV_SEVERITY_INFO, "Rangefinder disengaged at %.2fm", (double)rangefinder_state.height_estimate);
}
memset(&rangefinder_state, 0, sizeof(rangefinder_state));
}
}
}
}
#endif // AP_RANGEFINDER_ENABLED
/*
determine if Non Auto Terrain Disable is active and allowed in present control mode
*/
bool Plane::terrain_disabled()
{
return control_mode->allows_terrain_disable() && non_auto_terrain_disable;
}
/*
Check if terrain following is enabled for the current mode
*/
#if AP_TERRAIN_AVAILABLE
const Plane::TerrainLookupTable Plane::Terrain_lookup[] = {
{Mode::Number::FLY_BY_WIRE_B, terrain_bitmask::FLY_BY_WIRE_B},
{Mode::Number::CRUISE, terrain_bitmask::CRUISE},
{Mode::Number::AUTO, terrain_bitmask::AUTO},
{Mode::Number::RTL, terrain_bitmask::RTL},
{Mode::Number::AVOID_ADSB, terrain_bitmask::AVOID_ADSB},
{Mode::Number::GUIDED, terrain_bitmask::GUIDED},
{Mode::Number::LOITER, terrain_bitmask::LOITER},
{Mode::Number::CIRCLE, terrain_bitmask::CIRCLE},
#if HAL_QUADPLANE_ENABLED
{Mode::Number::QRTL, terrain_bitmask::QRTL},
{Mode::Number::QLAND, terrain_bitmask::QLAND},
{Mode::Number::QLOITER, terrain_bitmask::QLOITER},
#endif
};
bool Plane::terrain_enabled_in_current_mode() const
{
return terrain_enabled_in_mode(control_mode->mode_number());
}
bool Plane::terrain_enabled_in_mode(Mode::Number num) const
{
// Global enable
if ((g.terrain_follow.get() & int32_t(terrain_bitmask::ALL)) != 0) {
return true;
}
// Specific enable
for (const struct TerrainLookupTable entry : Terrain_lookup) {
if (entry.mode_num == num) {
if ((g.terrain_follow.get() & int32_t(entry.bitmask)) != 0) {
return true;
}
break;
}
}
return false;
}
#endif
#if AP_MAVLINK_MAV_CMD_SET_HAGL_ENABLED
/*
handle a MAV_CMD_SET_HAGL request. The accuracy is ignored
*/
void Plane::handle_external_hagl(const mavlink_command_int_t &packet)
{
auto &hagl = plane.external_hagl;
hagl.hagl = packet.param1;
hagl.last_update_ms = AP_HAL::millis();
hagl.timeout_ms = uint32_t(packet.param3 * 1000);
}
/*
get HAGL from external source if current
*/
bool Plane::get_external_HAGL(float &height_agl)
{
auto &hagl = plane.external_hagl;
if (hagl.last_update_ms != 0) {
const uint32_t now_ms = AP_HAL::millis();
if (now_ms - hagl.last_update_ms <= hagl.timeout_ms) {
height_agl = hagl.hagl;
return true;
}
hagl.last_update_ms = 0;
}
return false;
}
#endif // AP_MAVLINK_MAV_CMD_SET_HAGL_ENABLED
/*
get height for landing. Set using_rangefinder to true if a rangefinder
or external HAGL source is active
*/
float Plane::get_landing_height(bool &rangefinder_active)
{
float height;
#if AP_MAVLINK_MAV_CMD_SET_HAGL_ENABLED
// if external HAGL is active use that
if (get_external_HAGL(height)) {
// ensure no terrain correction is applied - that is the job
// of the external system if it is wanted
auto_state.terrain_correction = 0;
// an external HAGL is considered to be a type of rangefinder
rangefinder_active = true;
return height;
}
#endif
// get basic height above target
height = height_above_target();
rangefinder_active = false;
#if AP_RANGEFINDER_ENABLED
// possibly correct with rangefinder
height -= rangefinder_correction();
rangefinder_active = g.rangefinder_landing && rangefinder_state.in_range;
#endif
return height;
}