ardupilot/ArduCopter/Attitude.pde

1154 lines
41 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
static void
get_stabilize_roll(int32_t target_angle)
{
// angle error
target_angle = wrap_180(target_angle - ahrs.roll_sensor);
// limit the error we're feeding to the PID
target_angle = constrain(target_angle, -4500, 4500);
// convert to desired Rate:
int32_t target_rate = g.pi_stabilize_roll.get_p(target_angle);
int16_t i_stab;
if(labs(ahrs.roll_sensor) < 500) {
target_angle = constrain(target_angle, -500, 500);
i_stab = g.pi_stabilize_roll.get_i(target_angle, G_Dt);
}else{
i_stab = g.pi_stabilize_roll.get_integrator();
}
// set targets for rate controller
set_roll_rate_target(target_rate+i_stab, EARTH_FRAME);
}
static void
get_stabilize_pitch(int32_t target_angle)
{
// angle error
target_angle = wrap_180(target_angle - ahrs.pitch_sensor);
// limit the error we're feeding to the PID
target_angle = constrain(target_angle, -4500, 4500);
// convert to desired Rate:
int32_t target_rate = g.pi_stabilize_pitch.get_p(target_angle);
int16_t i_stab;
if(labs(ahrs.pitch_sensor) < 500) {
target_angle = constrain(target_angle, -500, 500);
i_stab = g.pi_stabilize_pitch.get_i(target_angle, G_Dt);
}else{
i_stab = g.pi_stabilize_pitch.get_integrator();
}
// set targets for rate controller
set_pitch_rate_target(target_rate + i_stab, EARTH_FRAME);
}
static void
get_stabilize_yaw(int32_t target_angle)
{
int32_t target_rate,i_term;
int32_t angle_error;
int32_t output = 0;
// angle error
angle_error = wrap_180(target_angle - ahrs.yaw_sensor);
// limit the error we're feeding to the PID
angle_error = constrain(angle_error, -4500, 4500);
// convert angle error to desired Rate:
target_rate = g.pi_stabilize_yaw.get_p(angle_error);
i_term = g.pi_stabilize_yaw.get_i(angle_error, G_Dt);
// do not use rate controllers for helicotpers with external gyros
#if FRAME_CONFIG == HELI_FRAME
if(motors.ext_gyro_enabled) {
g.rc_4.servo_out = constrain((target_rate + i_term), -4500, 4500);
}
#endif
#if LOGGING_ENABLED == ENABLED
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash
// log output if PID logging is on and we are tuning the yaw
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_YAW_KP || g.radio_tuning == CH6_YAW_RATE_KP) ) {
log_counter++;
if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10
log_counter = 0;
Log_Write_PID(CH6_YAW_KP, angle_error, target_rate, i_term, 0, output, tuning_value);
}
}
#endif
// set targets for rate controller
set_yaw_rate_target(target_rate+i_term, EARTH_FRAME);
}
static void
get_acro_roll(int32_t target_rate)
{
target_rate = target_rate * g.acro_p;
// set targets for rate controller
set_roll_rate_target(target_rate, BODY_FRAME);
}
static void
get_acro_pitch(int32_t target_rate)
{
target_rate = target_rate * g.acro_p;
// set targets for rate controller
set_pitch_rate_target(target_rate, BODY_FRAME);
}
static void
get_acro_yaw(int32_t target_rate)
{
target_rate = target_rate * g.acro_p;
// set targets for rate controller
set_yaw_rate_target(target_rate, BODY_FRAME);
}
// Roll with rate input and stabilized in the earth frame
static void
get_roll_rate_stabilized_ef(int32_t stick_angle)
{
int32_t angle_error = 0;
// convert the input to the desired roll rate
int32_t target_rate = stick_angle * g.acro_p - (roll_axis * g.acro_balance_roll)/100;
// convert the input to the desired roll rate
roll_axis += target_rate * G_Dt;
roll_axis = wrap_180(roll_axis);
// ensure that we don't reach gimbal lock
if (roll_axis > 4500 || roll_axis < -4500) {
roll_axis = constrain(roll_axis, -4500, 4500);
angle_error = wrap_180(roll_axis - ahrs.roll_sensor);
} else {
// angle error with maximum of +- max_angle_overshoot
angle_error = wrap_180(roll_axis - ahrs.roll_sensor);
angle_error = constrain(angle_error, -MAX_ROLL_OVERSHOOT, MAX_ROLL_OVERSHOOT);
}
if (motors.armed() == false || ((g.rc_3.control_in == 0) && !ap.failsafe)) {
angle_error = 0;
}
// update roll_axis to be within max_angle_overshoot of our current heading
roll_axis = wrap_180(angle_error + ahrs.roll_sensor);
// set earth frame targets for rate controller
// set earth frame targets for rate controller
set_roll_rate_target(g.pi_stabilize_roll.get_p(angle_error) + target_rate, EARTH_FRAME);
}
// Pitch with rate input and stabilized in the earth frame
static void
get_pitch_rate_stabilized_ef(int32_t stick_angle)
{
int32_t angle_error = 0;
// convert the input to the desired pitch rate
int32_t target_rate = stick_angle * g.acro_p - (pitch_axis * g.acro_balance_pitch)/100;
// convert the input to the desired pitch rate
pitch_axis += target_rate * G_Dt;
pitch_axis = wrap_180(pitch_axis);
// ensure that we don't reach gimbal lock
if (pitch_axis > 4500 || pitch_axis < -4500) {
pitch_axis = constrain(pitch_axis, -4500, 4500);
angle_error = wrap_180(pitch_axis - ahrs.pitch_sensor);
} else {
// angle error with maximum of +- max_angle_overshoot
angle_error = wrap_180(pitch_axis - ahrs.pitch_sensor);
angle_error = constrain(angle_error, -MAX_PITCH_OVERSHOOT, MAX_PITCH_OVERSHOOT);
}
if (motors.armed() == false || ((g.rc_3.control_in == 0) && !ap.failsafe)) {
angle_error = 0;
}
// update pitch_axis to be within max_angle_overshoot of our current heading
pitch_axis = wrap_180(angle_error + ahrs.pitch_sensor);
// set earth frame targets for rate controller
set_pitch_rate_target(g.pi_stabilize_pitch.get_p(angle_error) + target_rate, EARTH_FRAME);
}
// Yaw with rate input and stabilized in the earth frame
static void
get_yaw_rate_stabilized_ef(int32_t stick_angle)
{
int32_t angle_error = 0;
// convert the input to the desired yaw rate
int32_t target_rate = stick_angle * g.acro_p;
// convert the input to the desired yaw rate
nav_yaw += target_rate * G_Dt;
nav_yaw = wrap_360(nav_yaw);
// calculate difference between desired heading and current heading
angle_error = wrap_180(nav_yaw - ahrs.yaw_sensor);
// limit the maximum overshoot
angle_error = constrain(angle_error, -MAX_YAW_OVERSHOOT, MAX_YAW_OVERSHOOT);
if (motors.armed() == false || ((g.rc_3.control_in == 0) && !ap.failsafe)) {
angle_error = 0;
}
// update nav_yaw to be within max_angle_overshoot of our current heading
nav_yaw = wrap_360(angle_error + ahrs.yaw_sensor);
// set earth frame targets for rate controller
set_yaw_rate_target(g.pi_stabilize_yaw.get_p(angle_error)+target_rate, EARTH_FRAME);
}
// set_roll_rate_target - to be called by upper controllers to set roll rate targets in the earth frame
void set_roll_rate_target( int32_t desired_rate, uint8_t earth_or_body_frame ) {
rate_targets_frame = earth_or_body_frame;
if( earth_or_body_frame == BODY_FRAME ) {
roll_rate_target_bf = desired_rate;
}else{
roll_rate_target_ef = desired_rate;
}
}
// set_pitch_rate_target - to be called by upper controllers to set pitch rate targets in the earth frame
void set_pitch_rate_target( int32_t desired_rate, uint8_t earth_or_body_frame ) {
rate_targets_frame = earth_or_body_frame;
if( earth_or_body_frame == BODY_FRAME ) {
pitch_rate_target_bf = desired_rate;
}else{
pitch_rate_target_ef = desired_rate;
}
}
// set_yaw_rate_target - to be called by upper controllers to set yaw rate targets in the earth frame
void set_yaw_rate_target( int32_t desired_rate, uint8_t earth_or_body_frame ) {
rate_targets_frame = earth_or_body_frame;
if( earth_or_body_frame == BODY_FRAME ) {
yaw_rate_target_bf = desired_rate;
}else{
yaw_rate_target_ef = desired_rate;
}
}
// update_rate_contoller_targets - converts earth frame rates to body frame rates for rate controllers
void
update_rate_contoller_targets()
{
if( rate_targets_frame == EARTH_FRAME ) {
// convert earth frame rates to body frame rates
roll_rate_target_bf = roll_rate_target_ef - sin_pitch * yaw_rate_target_ef;
pitch_rate_target_bf = cos_roll_x * pitch_rate_target_ef + sin_roll * cos_pitch_x * yaw_rate_target_ef;
yaw_rate_target_bf = cos_pitch_x * cos_roll_x * yaw_rate_target_ef - sin_roll * pitch_rate_target_ef;
}
}
// run roll, pitch and yaw rate controllers and send output to motors
// targets for these controllers comes from stabilize controllers
void
run_rate_controllers()
{
#if FRAME_CONFIG == HELI_FRAME // helicopters only use rate controllers for yaw and only when not using an external gyro
if(!motors.ext_gyro_enabled) {
g.rc_1.servo_out = get_heli_rate_roll(roll_rate_target_bf);
g.rc_2.servo_out = get_heli_rate_pitch(pitch_rate_target_bf);
g.rc_4.servo_out = get_heli_rate_yaw(yaw_rate_target_bf);
}
#else
// call rate controllers
g.rc_1.servo_out = get_rate_roll(roll_rate_target_bf);
g.rc_2.servo_out = get_rate_pitch(pitch_rate_target_bf);
g.rc_4.servo_out = get_rate_yaw(yaw_rate_target_bf);
#endif
// run throttle controller if accel based throttle controller is enabled and active (active means it has been given a target)
if( g.throttle_accel_enabled && throttle_accel_controller_active ) {
set_throttle_out(get_throttle_accel(throttle_accel_target_ef), true);
}
}
#if FRAME_CONFIG == HELI_FRAME
// init_rate_controllers - set-up filters for rate controller inputs
void init_rate_controllers()
{
// initalise low pass filters on rate controller inputs
// 1st parameter is time_step, 2nd parameter is time_constant
rate_roll_filter.set_cutoff_frequency(0.01, 2.0);
rate_pitch_filter.set_cutoff_frequency(0.01, 2.0);
// rate_yaw_filter.set_cutoff_frequency(0.01, 2.0);
// other option for initialisation is rate_roll_filter.set_cutoff_frequency(<time_step>,<cutoff_freq>);
}
static int16_t
get_heli_rate_roll(int32_t target_rate)
{
int32_t p,i,d,ff; // used to capture pid values for logging
int32_t current_rate; // this iteration's rate
int32_t rate_error; // simply target_rate - current_rate
int32_t output; // output from pid controller
// get current rate
current_rate = (omega.x * DEGX100);
// filter input
current_rate = rate_roll_filter.apply(current_rate);
// call pid controller
rate_error = target_rate - current_rate;
p = g.pid_rate_roll.get_p(rate_error);
if (motors.flybar_mode == 1) { // Mechanical Flybars get regular integral for rate auto trim
if (target_rate > -50 && target_rate < 50){ // Frozen at high rates
i = g.pid_rate_roll.get_i(rate_error, G_Dt);
} else {
i = g.pid_rate_roll.get_integrator();
}
} else {
i = g.pid_rate_roll.get_leaky_i(rate_error, G_Dt, RATE_INTEGRATOR_LEAK_RATE); // Flybarless Helis get huge I-terms. I-term controls much of the rate
}
d = g.pid_rate_roll.get_d(rate_error, G_Dt);
ff = g.heli_roll_ff * target_rate;
output = p + i + d + ff;
// constrain output
output = constrain(output, -4500, 4500);
#if LOGGING_ENABLED == ENABLED
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash
// log output if PID logging is on and we are tuning the rate P, I or D gains
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_RATE_KP || g.radio_tuning == CH6_RATE_KI || g.radio_tuning == CH6_RATE_KD) ) {
log_counter++;
if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10
log_counter = 0;
Log_Write_PID(CH6_RATE_KP, rate_error, p, i, d, output, tuning_value);
}
}
#endif
// output control
return output;
}
static int16_t
get_heli_rate_pitch(int32_t target_rate)
{
int32_t p,i,d,ff; // used to capture pid values for logging
int32_t current_rate; // this iteration's rate
int32_t rate_error; // simply target_rate - current_rate
int32_t output; // output from pid controller
// get current rate
current_rate = (omega.y * DEGX100);
// filter input
current_rate = rate_pitch_filter.apply(current_rate);
// call pid controller
rate_error = target_rate - current_rate;
p = g.pid_rate_pitch.get_p(rate_error); // Helicopters get huge feed-forward
if (motors.flybar_mode == 1) { // Mechanical Flybars get regular integral for rate auto trim
if (target_rate > -50 && target_rate < 50){ // Frozen at high rates
i = g.pid_rate_pitch.get_i(rate_error, G_Dt);
} else {
i = g.pid_rate_pitch.get_integrator();
}
} else {
i = g.pid_rate_pitch.get_leaky_i(rate_error, G_Dt, RATE_INTEGRATOR_LEAK_RATE); // Flybarless Helis get huge I-terms. I-term controls much of the rate
}
d = g.pid_rate_pitch.get_d(rate_error, G_Dt);
ff = g.heli_pitch_ff*target_rate;
output = p + i + d + ff;
// constrain output
output = constrain(output, -4500, 4500);
#if LOGGING_ENABLED == ENABLED
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash
// log output if PID logging is on and we are tuning the rate P, I or D gains
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_RATE_KP || g.radio_tuning == CH6_RATE_KI || g.radio_tuning == CH6_RATE_KD) ) {
log_counter++;
if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10
log_counter = 0;
Log_Write_PID(CH6_RATE_KP+100, rate_error, p, i, 0, output, tuning_value);
}
}
#endif
// output control
return output;
}
static int16_t
get_heli_rate_yaw(int32_t target_rate)
{
int32_t p,i,d,ff; // used to capture pid values for logging
int32_t current_rate; // this iteration's rate
int32_t rate_error;
int32_t output;
// get current rate
current_rate = (omega.z * DEGX100);
// filter input
// current_rate = rate_yaw_filter.apply(current_rate);
// rate control
rate_error = target_rate - current_rate;
// separately calculate p, i, d values for logging
p = g.pid_rate_yaw.get_p(rate_error);
i = g.pid_rate_yaw.get_i(rate_error, G_Dt);
d = g.pid_rate_yaw.get_d(rate_error, G_Dt);
ff = g.heli_yaw_ff*target_rate;
output = p + i + d + ff;
output = constrain(output, -4500, 4500);
#if LOGGING_ENABLED == ENABLED
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash
// log output if PID loggins is on and we are tuning the yaw
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_YAW_KP || g.radio_tuning == CH6_YAW_RATE_KP) ) {
log_counter++;
if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10
log_counter = 0;
Log_Write_PID(CH6_YAW_RATE_KP, rate_error, p, i, d, output, tuning_value);
}
}
#endif
// output control
return output;
}
#endif // HELI_FRAME
#if FRAME_CONFIG != HELI_FRAME
static int16_t
get_rate_roll(int32_t target_rate)
{
int32_t p,i,d; // used to capture pid values for logging
int32_t current_rate; // this iteration's rate
int32_t rate_error; // simply target_rate - current_rate
int32_t output; // output from pid controller
// get current rate
current_rate = (omega.x * DEGX100);
// call pid controller
rate_error = target_rate - current_rate;
p = g.pid_rate_roll.get_p(rate_error);
// freeze I term if we've breached roll-pitch limits
if( motors.reached_limit(AP_MOTOR_ROLLPITCH_LIMIT) ) {
i = g.pid_rate_roll.get_integrator();
}else{
i = g.pid_rate_roll.get_i(rate_error, G_Dt);
}
d = g.pid_rate_roll.get_d(rate_error, G_Dt);
output = p + i + d;
// constrain output
output = constrain(output, -5000, 5000);
#if LOGGING_ENABLED == ENABLED
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash
// log output if PID logging is on and we are tuning the rate P, I or D gains
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_RATE_KP || g.radio_tuning == CH6_RATE_KI || g.radio_tuning == CH6_RATE_KD) ) {
log_counter++;
if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10
log_counter = 0;
Log_Write_PID(CH6_RATE_KP, rate_error, p, i, d /*-rate_d_dampener*/, output, tuning_value);
}
}
#endif
// output control
return output;
}
static int16_t
get_rate_pitch(int32_t target_rate)
{
int32_t p,i,d; // used to capture pid values for logging
int32_t current_rate; // this iteration's rate
int32_t rate_error; // simply target_rate - current_rate
int32_t output; // output from pid controller
// get current rate
current_rate = (omega.y * DEGX100);
// call pid controller
rate_error = target_rate - current_rate;
p = g.pid_rate_pitch.get_p(rate_error);
// freeze I term if we've breached roll-pitch limits
if( motors.reached_limit(AP_MOTOR_ROLLPITCH_LIMIT) ) {
i = g.pid_rate_pitch.get_integrator();
}else{
i = g.pid_rate_pitch.get_i(rate_error, G_Dt);
}
d = g.pid_rate_pitch.get_d(rate_error, G_Dt);
output = p + i + d;
// constrain output
output = constrain(output, -5000, 5000);
#if LOGGING_ENABLED == ENABLED
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash
// log output if PID logging is on and we are tuning the rate P, I or D gains
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_RATE_KP || g.radio_tuning == CH6_RATE_KI || g.radio_tuning == CH6_RATE_KD) ) {
log_counter++;
if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10
log_counter = 0;
Log_Write_PID(CH6_RATE_KP+100, rate_error, p, i, d/*-rate_d_dampener*/, output, tuning_value);
}
}
#endif
// output control
return output;
}
static int16_t
get_rate_yaw(int32_t target_rate)
{
int32_t p,i,d; // used to capture pid values for logging
int32_t rate_error;
int32_t output;
// rate control
rate_error = target_rate - (omega.z * DEGX100);
// separately calculate p, i, d values for logging
p = g.pid_rate_yaw.get_p(rate_error);
// freeze I term if we've breached yaw limits
if( motors.reached_limit(AP_MOTOR_YAW_LIMIT) ) {
i = g.pid_rate_yaw.get_integrator();
}else{
i = g.pid_rate_yaw.get_i(rate_error, G_Dt);
}
d = g.pid_rate_yaw.get_d(rate_error, G_Dt);
output = p+i+d;
output = constrain(output, -4500, 4500);
#if LOGGING_ENABLED == ENABLED
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash
// log output if PID loggins is on and we are tuning the yaw
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_YAW_KP || g.radio_tuning == CH6_YAW_RATE_KP) ) {
log_counter++;
if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10
log_counter = 0;
Log_Write_PID(CH6_YAW_RATE_KP, rate_error, p, i, d, output, tuning_value);
}
}
#endif
#if FRAME_CONFIG == TRI_FRAME
// constrain output
return output;
#else // !TRI_FRAME
// output control:
int16_t yaw_limit = 2200 + abs(g.rc_4.control_in);
// smoother Yaw control:
return constrain(output, -yaw_limit, yaw_limit);
#endif // TRI_FRAME
}
#endif // !HELI_FRAME
// calculate modified roll/pitch depending upon optical flow calculated position
static int32_t
get_of_roll(int32_t input_roll)
{
#ifdef OPTFLOW_ENABLED
static float tot_x_cm = 0; // total distance from target
static uint32_t last_of_roll_update = 0;
int32_t new_roll = 0;
int32_t p,i,d;
// check if new optflow data available
if( optflow.last_update != last_of_roll_update) {
last_of_roll_update = optflow.last_update;
// add new distance moved
tot_x_cm += optflow.x_cm;
// only stop roll if caller isn't modifying roll
if( input_roll == 0 && current_loc.alt < 1500) {
p = g.pid_optflow_roll.get_p(-tot_x_cm);
i = g.pid_optflow_roll.get_i(-tot_x_cm,1.0); // we could use the last update time to calculate the time change
d = g.pid_optflow_roll.get_d(-tot_x_cm,1.0);
new_roll = p+i+d;
}else{
g.pid_optflow_roll.reset_I();
tot_x_cm = 0;
p = 0; // for logging
i = 0;
d = 0;
}
// limit amount of change and maximum angle
of_roll = constrain(new_roll, (of_roll-20), (of_roll+20));
#if LOGGING_ENABLED == ENABLED
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash
// log output if PID logging is on and we are tuning the rate P, I or D gains
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_OPTFLOW_KP || g.radio_tuning == CH6_OPTFLOW_KI || g.radio_tuning == CH6_OPTFLOW_KD) ) {
log_counter++;
if( log_counter >= 5 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10
log_counter = 0;
Log_Write_PID(CH6_OPTFLOW_KP, tot_x_cm, p, i, d, of_roll, tuning_value);
}
}
#endif // LOGGING_ENABLED == ENABLED
}
// limit max angle
of_roll = constrain(of_roll, -1000, 1000);
return input_roll+of_roll;
#else
return input_roll;
#endif
}
static int32_t
get_of_pitch(int32_t input_pitch)
{
#ifdef OPTFLOW_ENABLED
static float tot_y_cm = 0; // total distance from target
static uint32_t last_of_pitch_update = 0;
int32_t new_pitch = 0;
int32_t p,i,d;
// check if new optflow data available
if( optflow.last_update != last_of_pitch_update ) {
last_of_pitch_update = optflow.last_update;
// add new distance moved
tot_y_cm += optflow.y_cm;
// only stop roll if caller isn't modifying pitch
if( input_pitch == 0 && current_loc.alt < 1500 ) {
p = g.pid_optflow_pitch.get_p(tot_y_cm);
i = g.pid_optflow_pitch.get_i(tot_y_cm, 1.0); // we could use the last update time to calculate the time change
d = g.pid_optflow_pitch.get_d(tot_y_cm, 1.0);
new_pitch = p + i + d;
}else{
tot_y_cm = 0;
g.pid_optflow_pitch.reset_I();
p = 0; // for logging
i = 0;
d = 0;
}
// limit amount of change
of_pitch = constrain(new_pitch, (of_pitch-20), (of_pitch+20));
#if LOGGING_ENABLED == ENABLED
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash
// log output if PID logging is on and we are tuning the rate P, I or D gains
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_OPTFLOW_KP || g.radio_tuning == CH6_OPTFLOW_KI || g.radio_tuning == CH6_OPTFLOW_KD) ) {
log_counter++;
if( log_counter >= 5 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10
log_counter = 0;
Log_Write_PID(CH6_OPTFLOW_KP+100, tot_y_cm, p, i, d, of_pitch, tuning_value);
}
}
#endif // LOGGING_ENABLED == ENABLED
}
// limit max angle
of_pitch = constrain(of_pitch, -1000, 1000);
return input_pitch+of_pitch;
#else
return input_pitch;
#endif
}
/*************************************************************
* yaw controllers
*************************************************************/
static void get_look_ahead_yaw(int16_t pilot_yaw)
{
// Commanded Yaw to automatically look ahead.
if (g_gps->fix && g_gps->ground_course > YAW_LOOK_AHEAD_MIN_SPEED) {
nav_yaw = get_yaw_slew(nav_yaw, g_gps->ground_course, AUTO_YAW_SLEW_RATE);
get_stabilize_yaw(wrap_360(nav_yaw + pilot_yaw)); // Allow pilot to "skid" around corners up to 45 degrees
}else{
nav_yaw += pilot_yaw * g.acro_p * G_Dt;
nav_yaw = wrap_360(nav_yaw);
get_stabilize_yaw(nav_yaw);
}
}
/*************************************************************
* throttle control
****************************************************************/
// update_throttle_cruise - update throttle cruise if necessary
static void update_throttle_cruise(int16_t throttle)
{
// ensure throttle_avg has been initialised
if( throttle_avg == 0 ) {
throttle_avg = g.throttle_cruise;
}
// calc average throttle if we are in a level hover
if (throttle > g.throttle_min && abs(climb_rate) < 60 && labs(ahrs.roll_sensor) < 500 && labs(ahrs.pitch_sensor) < 500) {
throttle_avg = throttle_avg * .99 + (float)throttle * .01;
g.throttle_cruise = throttle_avg;
}
}
#if FRAME_CONFIG == HELI_FRAME
// get_angle_boost - returns a throttle including compensation for roll/pitch angle
// throttle value should be 0 ~ 1000
// for traditional helicopters
static int16_t get_angle_boost(int16_t throttle)
{
float angle_boost_factor = cos_pitch_x * cos_roll_x;
angle_boost_factor = 1.0 - constrain(angle_boost_factor, .5, 1.0);
int16_t throttle_above_mid = max(throttle - motors.throttle_mid,0);
// to allow logging of angle boost
angle_boost = throttle_above_mid*angle_boost_factor;
return throttle + angle_boost;
}
#else // all multicopters
// get_angle_boost - returns a throttle including compensation for roll/pitch angle
// throttle value should be 0 ~ 1000
static int16_t get_angle_boost(int16_t throttle)
{
float temp = cos_pitch_x * cos_roll_x;
int16_t throttle_out;
temp = constrain(temp, .5, 1.0);
temp = constrain(9000-max(labs(roll_axis),labs(pitch_axis)), 0, 3000) / (3000 * temp);
throttle_out = constrain((float)(throttle-g.throttle_min) * temp + g.throttle_min, g.throttle_min, 1000);
//Serial.printf("Thin:%4.2f sincos:%4.2f temp:%4.2f roll_axis:%4.2f Out:%4.2f \n", 1.0*throttle, 1.0*cos_pitch_x * cos_roll_x, 1.0*temp, 1.0*roll_axis, 1.0*constrain((float)value * temp, 0, 1000));
// to allow logging of angle boost
angle_boost = throttle_out - throttle;
return throttle_out;
}
#endif // FRAME_CONFIG == HELI_FRAME
// set_throttle_out - to be called by upper throttle controllers when they wish to provide throttle output directly to motors
// provide 0 to cut motors
void set_throttle_out( int16_t throttle_out, bool apply_angle_boost )
{
if( apply_angle_boost ) {
g.rc_3.servo_out = get_angle_boost(throttle_out);
}else{
g.rc_3.servo_out = throttle_out;
// clear angle_boost for logging purposes
angle_boost = 0;
}
}
// set_throttle_accel_target - to be called by upper throttle controllers to set desired vertical acceleration in earth frame
void set_throttle_accel_target( int16_t desired_acceleration )
{
if( g.throttle_accel_enabled ) {
throttle_accel_target_ef = desired_acceleration;
throttle_accel_controller_active = true;
}else{
// To-Do log dataflash or tlog error
cliSerial->print_P(PSTR("Err: target sent to inactive acc thr controller!\n"));
}
}
// disable_throttle_accel - disables the accel based throttle controller
// it will be re-enasbled on the next set_throttle_accel_target
// required when we wish to set motors to zero when pilot inputs zero throttle
void throttle_accel_deactivate()
{
throttle_accel_controller_active = false;
}
// get_throttle_accel - accelerometer based throttle controller
// returns an actual throttle output (0 ~ 1000) to be sent to the motors
static int16_t
get_throttle_accel(int16_t z_target_accel)
{
static float accel_one_g = -980; // filtered estimate of 1G in cm/s/s
int32_t p,i,d; // used to capture pid values for logging
int16_t z_accel_error, output;
float z_accel_meas_temp;
Vector3f accel = ins.get_accel();
Matrix3f dcm_matrix = ahrs.get_dcm_matrix();
// Calculate Earth Frame Z acceleration
z_accel_meas_temp = (dcm_matrix.c.x * accel.x + dcm_matrix.c.y * accel.y + dcm_matrix.c.z * accel.z)* 100.0;
// Filter Earth Frame Z acceleration with fc = 0.01 Hz to find 1 g
accel_one_g = accel_one_g + 0.00062792 * (z_accel_meas_temp - accel_one_g);
z_accel_meas_temp = z_accel_meas_temp - accel_one_g;
// Filter Earth Frame Z acceleration with fc = 1 Hz
z_accel_meas = z_accel_meas + 0.059117 * (z_accel_meas_temp - z_accel_meas);
// calculate accel error
z_accel_error = constrain(z_target_accel + z_accel_meas, -32000, 32000);
// separately calculate p, i, d values for logging
p = g.pid_throttle_accel.get_p(z_accel_error);
// freeze I term if we've breached throttle limits
if( motors.reached_limit(AP_MOTOR_THROTTLE_LIMIT) ) {
i = g.pid_throttle_accel.get_integrator();
}else{
i = g.pid_throttle_accel.get_i(z_accel_error, .01);
}
d = g.pid_throttle_accel.get_d(z_accel_error, .01);
//
// limit the rate
output = constrain(p+i+d+g.throttle_cruise, g.throttle_min, g.throttle_max);
#if LOGGING_ENABLED == ENABLED
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash
// log output if PID loggins is on and we are tuning the yaw
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_THR_ACCEL_KD || g.radio_tuning == CH6_THROTTLE_KP) ) {
log_counter++;
if( log_counter >= 10 ) { // (update rate / desired output rate) = (50hz / 10hz) = 5hz
log_counter = 0;
Log_Write_PID(CH6_THR_ACCEL_KD, z_accel_error, p, i, d, output, tuning_value);
}
}
#endif
return output;
}
// get_pilot_desired_climb_rate - transform pilot's throttle input to
// climb rate in cm/s. we use radio_in instead of control_in to get the full range
// without any deadzone at the bottom
#define THROTTLE_IN_MIDDLE 500 // the throttle mid point
#define THROTTLE_IN_DEADBAND 100 // the throttle input channel's deadband in PWM
#define THROTTLE_IN_DEADBAND_TOP (THROTTLE_IN_MIDDLE+THROTTLE_IN_DEADBAND) // top of the deadband
#define THROTTLE_IN_DEADBAND_BOTTOM (THROTTLE_IN_MIDDLE-THROTTLE_IN_DEADBAND) // bottom of the deadband
static int16_t get_pilot_desired_climb_rate(int16_t throttle_control)
{
int16_t desired_rate = 0;
// throttle failsafe check
if( ap.failsafe ) {
return 0;
}
// ensure a reasonable throttle value
throttle_control = constrain(throttle_control,0,1000);
// check throttle is above, below or in the deadband
if (throttle_control < THROTTLE_IN_DEADBAND_BOTTOM) {
// below the deadband
desired_rate = (int32_t)VELOCITY_MAX_Z * (throttle_control-THROTTLE_IN_DEADBAND_BOTTOM) / (THROTTLE_IN_MIDDLE - THROTTLE_IN_DEADBAND);
}else if (throttle_control > THROTTLE_IN_DEADBAND_TOP) {
// above the deadband
desired_rate = (int32_t)VELOCITY_MAX_Z * (throttle_control-THROTTLE_IN_DEADBAND_TOP) / (THROTTLE_IN_MIDDLE - THROTTLE_IN_DEADBAND);
}else{
// must be in the deadband
desired_rate = 0;
}
// desired climb rate for logging
desired_climb_rate = desired_rate;
return desired_rate;
}
// get_pilot_desired_acceleration - transform pilot's throttle input to a desired acceleration
// default upper and lower bounds are 500 cm/s/s (roughly 1/2 a G)
// returns acceleration in cm/s/s
static int16_t get_pilot_desired_acceleration(int16_t throttle_control)
{
int32_t desired_accel = 0;
// throttle failsafe check
if( ap.failsafe ) {
return 0;
}
// ensure a reasonable throttle value
throttle_control = constrain(throttle_control,0,1000);
// check throttle is above, below or in the deadband
if (throttle_control < THROTTLE_IN_DEADBAND_BOTTOM) {
// below the deadband
desired_accel = (int32_t)ACCELERATION_MAX_Z * (throttle_control-THROTTLE_IN_DEADBAND_BOTTOM) / (THROTTLE_IN_MIDDLE - THROTTLE_IN_DEADBAND);
}else if(throttle_control > THROTTLE_IN_DEADBAND_TOP) {
// above the deadband
desired_accel = (int32_t)ACCELERATION_MAX_Z * (throttle_control-THROTTLE_IN_DEADBAND_TOP) / (THROTTLE_IN_MIDDLE - THROTTLE_IN_DEADBAND);
}else{
// must be in the deadband
desired_accel = 0;
}
return desired_accel;
}
// get_pilot_desired_direct_alt - transform pilot's throttle input to a desired altitude
// return altitude in cm between 0 to 10m
static int32_t get_pilot_desired_direct_alt(int16_t throttle_control)
{
int32_t desired_alt = 0;
// throttle failsafe check
if( ap.failsafe ) {
return 0;
}
// ensure a reasonable throttle value
throttle_control = constrain(throttle_control,0,1000);
desired_alt = throttle_control;
return desired_alt;
}
// get_throttle_rate - calculates desired accel required to achieve desired z_target_speed
// sets accel based throttle controller target
static void
get_throttle_rate(int16_t z_target_speed)
{
int32_t p,i,d; // used to capture pid values for logging
int16_t z_rate_error;
int16_t output; // the target acceleration if the accel based throttle is enabled, otherwise the output to be sent to the motors
// calculate rate error
#if INERTIAL_NAV_Z == ENABLED
z_rate_error = z_target_speed - inertial_nav._velocity.z; // calc the speed error
#else
z_rate_error = z_target_speed - climb_rate; // calc the speed error
#endif
// separately calculate p, i, d values for logging
p = g.pid_throttle.get_p(z_rate_error);
// freeze I term if we've breached throttle limits
if(motors.reached_limit(AP_MOTOR_THROTTLE_LIMIT)) {
i = g.pid_throttle.get_integrator();
}else{
i = g.pid_throttle.get_i(z_rate_error, .02);
}
d = g.pid_throttle.get_d(z_rate_error, .02);
// consolidate target acceleration
output = p+i+d;
#if LOGGING_ENABLED == ENABLED
static uint8_t log_counter = 0; // used to slow down logging of PID values to dataflash
// log output if PID loggins is on and we are tuning the yaw
if( g.log_bitmask & MASK_LOG_PID && g.radio_tuning == CH6_THROTTLE_KP ) {
log_counter++;
if( log_counter >= 10 ) { // (update rate / desired output rate) = (50hz / 10hz) = 5hz
log_counter = 0;
Log_Write_PID(CH6_THROTTLE_KP, z_rate_error, p, i, d, output, tuning_value);
}
}
#endif
// send output to accelerometer based throttle controller if enabled otherwise send directly to motors
if( g.throttle_accel_enabled ) {
// set target for accel based throttle controller
set_throttle_accel_target(output);
}else{
set_throttle_out(g.throttle_cruise+output, true);
}
// update throttle cruise
// TO-DO: this may not be correct because g.rc_3.servo_out has not been updated for this iteration
if( z_target_speed == 0 ) {
update_throttle_cruise(g.rc_3.servo_out);
}
}
// get_throttle_rate_stabilized - rate controller with additional 'stabilizer'
// 'stabilizer' ensure desired rate is being met
// calls normal throttle rate controller which updates accel based throttle controller targets
static void
get_throttle_rate_stabilized(int16_t target_rate)
{
static float alt_desired = 0; // The desired altitude in cm.
static float alt_rate = 0; // the desired climb rate in cm/s.
static uint32_t last_call_ms = 0;
float altitude_error;
int16_t desired_rate;
int16_t alt_error_max;
uint32_t now = millis();
// reset target altitude if this controller has just been engaged
if( now - last_call_ms > 1000 ) {
alt_desired = current_loc.alt;
}
last_call_ms = millis();
// Limit acceleration of the desired altitude to +-5 m/s^2
alt_rate += constrain(target_rate-alt_rate, -10, 10);
alt_desired += alt_rate * 0.02;
alt_error_max = constrain(600-abs(target_rate),100,600);
altitude_error = constrain(alt_desired - current_loc.alt, -alt_error_max, alt_error_max);
alt_desired = current_loc.alt + altitude_error;
desired_rate = g.pi_alt_hold.get_p(altitude_error);
desired_rate = constrain(desired_rate, -200, 200) + target_rate;
desired_rate = constrain(desired_rate, -VELOCITY_MAX_Z, VELOCITY_MAX_Z); // TO-DO: replace constrains with ALTHOLD_MIN_CLIMB_RATE and ALTHOLD_MAX_CLIMB_RATE?
// call rate based throttle controller which will update accel based throttle controller targets
get_throttle_rate(desired_rate);
}
// get_throttle_althold - hold at the desired altitude in cm
// updates accel based throttle controller targets
// Note: max_climb_rate is an optional parameter to allow reuse of this function by landing controller
static void
get_throttle_althold(int32_t target_alt, int16_t max_climb_rate)
{
int32_t altitude_error;
int16_t desired_rate;
altitude_error = target_alt - current_loc.alt;
desired_rate = g.pi_alt_hold.get_p(altitude_error);
desired_rate = constrain(desired_rate, ALTHOLD_MIN_CLIMB_RATE, max_climb_rate);
// call rate based throttle controller which will update accel based throttle controller targets
get_throttle_rate(desired_rate);
// TO-DO: enabled PID logging for this controller
//Log_Write_PID(1, (int32_t)target_alt, (int32_t)current_loc.alt, (int32_t)climb_rate, (int32_t)altitude_error, (int32_t)desired_rate, (float)desired_accel);
//Log_Write_PID(1, target_alt, current_loc.alt, climb_rate, altitude_error, desired_rate, desired_accel);
}
// get_throttle_land - high level landing logic
// sends the desired acceleration in the accel based throttle controller
// called at 50hz
#define LAND_START_ALT 1000 // altitude in cm where land controller switches to slow rate of descent
#define LAND_DETECTOR_TRIGGER 50 // number of 50hz iterations with near zero climb rate and low throttle that triggers landing complete.
static void
get_throttle_land()
{
// if we are above 10m perform regular alt hold descent
if (current_loc.alt >= LAND_START_ALT) {
get_throttle_althold(LAND_START_ALT, -abs(g.land_speed));
}else{
get_throttle_rate_stabilized(-abs(g.land_speed));
// detect whether we have landed by watching for minimum throttle and now movement
#if INERTIAL_NAV_Z == ENABLED
if (abs(inertial_nav._velocity.z) < 20 && (g.rc_3.servo_out <= get_angle_boost(g.throttle_min) || g.pid_throttle_accel.get_integrator() <= -150)) {
#else
if (abs(climb_rate) < 20 && (g.rc_3.servo_out <= get_angle_boost(g.throttle_min) || g.pid_throttle_accel.get_integrator() <= -150)) {
#endif
if( land_detector < LAND_DETECTOR_TRIGGER ) {
land_detector++;
}else{
set_land_complete(true);
if( g.rc_3.control_in == 0 || ap.failsafe ) {
init_disarm_motors();
}
}
}else{
// we've sensed movement up or down so decrease land_detector
if (land_detector > 0 ) {
land_detector--;
}
}
}
}
/*
* reset all I integrators
*/
static void reset_I_all(void)
{
reset_rate_I();
reset_stability_I();
reset_wind_I();
reset_throttle_I();
reset_optflow_I();
// This is the only place we reset Yaw
g.pi_stabilize_yaw.reset_I();
}
static void reset_rate_I()
{
g.pid_rate_roll.reset_I();
g.pid_rate_pitch.reset_I();
g.pid_rate_yaw.reset_I();
}
static void reset_optflow_I(void)
{
g.pid_optflow_roll.reset_I();
g.pid_optflow_pitch.reset_I();
of_roll = 0;
of_pitch = 0;
}
static void reset_wind_I(void)
{
// Wind Compensation
// this i is not currently being used, but we reset it anyway
// because someone may modify it and not realize it, causing a bug
g.pi_loiter_lat.reset_I();
g.pi_loiter_lon.reset_I();
g.pid_loiter_rate_lat.reset_I();
g.pid_loiter_rate_lon.reset_I();
g.pid_nav_lat.reset_I();
g.pid_nav_lon.reset_I();
}
static void reset_throttle_I(void)
{
// For Altitude Hold
g.pi_alt_hold.reset_I();
g.pid_throttle.reset_I();
}
static void reset_stability_I(void)
{
// Used to balance a quad
// This only needs to be reset during Auto-leveling in flight
g.pi_stabilize_roll.reset_I();
g.pi_stabilize_pitch.reset_I();
}