mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-19 07:08:29 -04:00
d4024d9216
increase notch filters in SITL remove redundant harmonics from DSP
331 lines
13 KiB
C++
331 lines
13 KiB
C++
/*
|
|
* This file is free software: you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This file is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
* See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Code by Andy Piper
|
|
*/
|
|
|
|
#include <AP_Math/AP_Math.h>
|
|
#include "AP_HAL.h"
|
|
#include "DSP.h"
|
|
|
|
#if HAL_WITH_DSP
|
|
|
|
using namespace AP_HAL;
|
|
|
|
extern const AP_HAL::HAL &hal;
|
|
|
|
#define SQRT_2_3 0.816496580927726f
|
|
#define SQRT_6 2.449489742783178f
|
|
|
|
DSP::FFTWindowState::FFTWindowState(uint16_t window_size, uint16_t sample_rate)
|
|
: _window_size(window_size),
|
|
_bin_count(window_size / 2),
|
|
_bin_resolution((float)sample_rate / (float)window_size)
|
|
{
|
|
// includes DC ad Nyquist components and needs to be large enough for intermediate steps
|
|
_freq_bins = (float*)hal.util->malloc_type(sizeof(float) * (window_size), DSP_MEM_REGION);
|
|
_derivative_freq_bins = (float*)hal.util->malloc_type(sizeof(float) * (_bin_count + 1), DSP_MEM_REGION);
|
|
_hanning_window = (float*)hal.util->malloc_type(sizeof(float) * (window_size), DSP_MEM_REGION);
|
|
// allocate workspace, including Nyquist component
|
|
_rfft_data = (float*)hal.util->malloc_type(sizeof(float) * (_window_size + 2), DSP_MEM_REGION);
|
|
|
|
if (_freq_bins == nullptr || _hanning_window == nullptr || _rfft_data == nullptr || _derivative_freq_bins == nullptr) {
|
|
hal.util->free_type(_freq_bins, sizeof(float) * (_window_size), DSP_MEM_REGION);
|
|
hal.util->free_type(_derivative_freq_bins, sizeof(float) * (_bin_count), DSP_MEM_REGION);
|
|
hal.util->free_type(_hanning_window, sizeof(float) * (_window_size), DSP_MEM_REGION);
|
|
hal.util->free_type(_rfft_data, sizeof(float) * (_window_size + 2), DSP_MEM_REGION);
|
|
|
|
_freq_bins = nullptr;
|
|
_derivative_freq_bins = nullptr;
|
|
_hanning_window = nullptr;
|
|
_rfft_data = nullptr;
|
|
return;
|
|
}
|
|
|
|
// create the Hanning window
|
|
// https://holometer.fnal.gov/GH_FFT.pdf - equation 19
|
|
for (uint16_t i = 0; i < window_size; i++) {
|
|
_hanning_window[i] = (0.5f - 0.5f * cosf(2.0f * M_PI * i / ((float)window_size - 1)));
|
|
_window_scale += _hanning_window[i];
|
|
}
|
|
// Calculate the inverse of the Effective Noise Bandwidth
|
|
_window_scale = 2.0f / sq(_window_scale);
|
|
}
|
|
|
|
DSP::FFTWindowState::~FFTWindowState()
|
|
{
|
|
hal.util->free_type(_freq_bins, sizeof(float) * (_window_size), DSP_MEM_REGION);
|
|
_freq_bins = nullptr;
|
|
hal.util->free_type(_derivative_freq_bins, sizeof(float) * (_bin_count), DSP_MEM_REGION);
|
|
_derivative_freq_bins = nullptr;
|
|
hal.util->free_type(_hanning_window, sizeof(float) * (_window_size), DSP_MEM_REGION);
|
|
_hanning_window = nullptr;
|
|
hal.util->free_type(_rfft_data, sizeof(float) * (_window_size + 2), DSP_MEM_REGION);
|
|
_rfft_data = nullptr;
|
|
}
|
|
|
|
// step 3: find the magnitudes of the complex data
|
|
void DSP::step_cmplx_mag(FFTWindowState* fft, uint16_t start_bin, uint16_t end_bin, float noise_att_cutoff)
|
|
{
|
|
// fft->_freq_bins is populated with the complex magnitude values of the fft data
|
|
// find the maximum power in the range we are interested in
|
|
// in order to see a peak in the last bin we need to allow all the way up to the nyquist
|
|
const uint16_t smoothwidth = 1;
|
|
uint16_t bin_range = (MIN(end_bin + ((smoothwidth + 1) >> 1) + 2, fft->_bin_count) - start_bin) + 1;
|
|
// find the three highest peaks using a zero crossing algorithm
|
|
uint16_t peaks[MAX_TRACKED_PEAKS] {};
|
|
memset(fft->_peak_data, 0, sizeof(fft->_peak_data));
|
|
uint16_t numpeaks = find_peaks(&fft->_freq_bins[start_bin], bin_range, fft->_derivative_freq_bins, peaks, MAX_TRACKED_PEAKS, 0.0f, -1.0f, smoothwidth, 2);
|
|
//hal.console->printf("found %d peaks\n", numpeaks);
|
|
|
|
for (uint16_t i = 0; i < MAX_TRACKED_PEAKS; i++) {
|
|
fft->_peak_data[i]._bin = peaks[i] + start_bin;
|
|
}
|
|
|
|
uint16_t top = 0, bottom = 0;
|
|
fft->_peak_data[CENTER]._noise_width_hz = find_noise_width(fft, start_bin, end_bin, fft->_peak_data[CENTER]._bin, noise_att_cutoff, top, bottom);
|
|
if (numpeaks > 1) {
|
|
fft->_peak_data[LOWER_SHOULDER]._noise_width_hz = find_noise_width(fft, start_bin, end_bin, fft->_peak_data[LOWER_SHOULDER]._bin, noise_att_cutoff, top, bottom);
|
|
}
|
|
if (numpeaks > 2) {
|
|
fft->_peak_data[UPPER_SHOULDER]._noise_width_hz = find_noise_width(fft, start_bin, end_bin, fft->_peak_data[UPPER_SHOULDER]._bin, noise_att_cutoff, top, bottom);
|
|
}
|
|
|
|
// scale the power to account for the input window
|
|
vector_scale_float(fft->_freq_bins, fft->_window_scale, fft->_freq_bins, fft->_bin_count);
|
|
}
|
|
|
|
// calculate the noise width of a peak based on the input parameters
|
|
float DSP::find_noise_width(FFTWindowState* fft, uint16_t start_bin, uint16_t end_bin, uint16_t max_energy_bin, float cutoff, uint16_t& peak_top, uint16_t& peak_bottom) const
|
|
{
|
|
// max_energy_bin is guaranteed to be between start_bin and end_bin
|
|
peak_top = end_bin;
|
|
peak_bottom = start_bin;
|
|
|
|
// calculate the width of the peak
|
|
float noise_width_hz = 1;
|
|
|
|
// -attenuation/2 dB point above the center bin
|
|
if (max_energy_bin < end_bin) {
|
|
for (uint16_t b = max_energy_bin + 1; b <= end_bin; b++) {
|
|
if (fft->_freq_bins[b] < fft->_freq_bins[max_energy_bin] * cutoff) {
|
|
// we assume that the 3dB point is in the middle of the final shoulder bin
|
|
noise_width_hz += (b - max_energy_bin - 0.5f);
|
|
peak_top = b;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// -attenuation/2 dB point below the center bin
|
|
if (max_energy_bin > start_bin) {
|
|
for (uint16_t b = max_energy_bin - 1; b >= start_bin; b--) {
|
|
if (fft->_freq_bins[b] < fft->_freq_bins[max_energy_bin] * cutoff) {
|
|
// we assume that the 3dB point is in the middle of the final shoulder bin
|
|
noise_width_hz += (max_energy_bin - b - 0.5f);
|
|
peak_bottom = b;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
noise_width_hz *= fft->_bin_resolution;
|
|
|
|
return noise_width_hz;
|
|
}
|
|
|
|
// step 4: find the bin with the highest energy and interpolate the required frequency
|
|
uint16_t DSP::step_calc_frequencies(FFTWindowState* fft, uint16_t start_bin, uint16_t end_bin)
|
|
{
|
|
fft->_peak_data[CENTER]._freq_hz = calc_frequency(fft, start_bin, fft->_peak_data[CENTER]._bin, end_bin);
|
|
fft->_peak_data[UPPER_SHOULDER]._freq_hz = calc_frequency(fft, start_bin, fft->_peak_data[UPPER_SHOULDER]._bin, end_bin);
|
|
fft->_peak_data[LOWER_SHOULDER]._freq_hz = calc_frequency(fft, start_bin, fft->_peak_data[LOWER_SHOULDER]._bin, end_bin);
|
|
|
|
return fft->_peak_data[CENTER]._bin;
|
|
}
|
|
|
|
// calculate a single frequency
|
|
uint16_t DSP::calc_frequency(FFTWindowState* fft, uint16_t start_bin, uint16_t peak_bin, uint16_t end_bin)
|
|
{
|
|
if (peak_bin == 0 || is_zero(fft->_freq_bins[peak_bin])) {
|
|
return start_bin * fft->_bin_resolution;
|
|
}
|
|
|
|
peak_bin = constrain_int16(peak_bin, start_bin, end_bin);
|
|
|
|
// It turns out that Jain is pretty good and works with only magnitudes, but Candan is significantly better
|
|
// if you have access to the complex values and Quinn is a little better still. Quinn is computationally
|
|
// more expensive, but compared to the overall FFT cost seems worth it.
|
|
return (peak_bin + calculate_quinns_second_estimator(fft, fft->_rfft_data, peak_bin)) * fft->_bin_resolution;
|
|
}
|
|
|
|
// Interpolate center frequency using https://dspguru.com/dsp/howtos/how-to-interpolate-fft-peak/
|
|
float DSP::calculate_quinns_second_estimator(const FFTWindowState* fft, const float* complex_fft, uint16_t k_max) const
|
|
{
|
|
if (k_max <= 1 || k_max >= fft->_bin_count) {
|
|
return 0.0f;
|
|
}
|
|
|
|
const uint16_t k_m1 = (k_max - 1) * 2;
|
|
const uint16_t k_p1 = (k_max + 1) * 2;
|
|
const uint16_t k = k_max * 2;
|
|
|
|
const float divider = complex_fft[k] * complex_fft[k] + complex_fft[k+1] * complex_fft[k+1];
|
|
const float ap = (complex_fft[k_p1] * complex_fft[k] + complex_fft[k_p1 + 1] * complex_fft[k+1]) / divider;
|
|
const float am = (complex_fft[k_m1] * complex_fft[k] + complex_fft[k_m1 + 1] * complex_fft[k + 1]) / divider;
|
|
|
|
// sanity check
|
|
if (fabsf(1.0f - ap) < 0.01f || fabsf(1.0f - am) < 0.01f) {
|
|
return 0.0f;
|
|
}
|
|
|
|
const float dp = -ap / (1.0f - ap);
|
|
const float dm = am / (1.0f - am);
|
|
|
|
float d = (dp + dm) * 0.5f + tau(dp * dp) - tau(dm * dm);
|
|
|
|
// -0.5 < d < 0.5 which is the fraction of the sample spacing about the center element
|
|
return constrain_float(d, -0.5f, 0.5f);
|
|
}
|
|
|
|
static const float TAU_FACTOR = SQRT_6 / 24.0f;
|
|
|
|
// Helper function used for Quinn's frequency estimation
|
|
float DSP::tau(const float x) const
|
|
{
|
|
float p1 = logf(3.0f * sq(x) + 6.0f * x + 1.0f);
|
|
float part1 = x + 1.0f - SQRT_2_3;
|
|
float part2 = x + 1.0f + SQRT_2_3;
|
|
float p2 = logf(part1 / part2);
|
|
return (0.25f * p1 - TAU_FACTOR * p2);
|
|
}
|
|
|
|
// find all the peaks in the fft window using https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
|
|
// in general peakgrup > 2 is only good for very broad noisy peaks, <= 2 better for spikey peaks, although 1 will miss
|
|
// a true spike 50% of the time
|
|
uint16_t DSP::find_peaks(const float* input, uint16_t length, float* d, uint16_t* peaks, uint16_t peaklen,
|
|
float slopeThreshold, float ampThreshold, uint16_t smoothwidth, uint16_t peakgroup) const
|
|
{
|
|
if (smoothwidth > 1) {
|
|
derivative(input, d, length);
|
|
fastsmooth(d, length, smoothwidth);
|
|
} else {
|
|
derivative(input, d, length);
|
|
}
|
|
|
|
uint16_t n = ((peakgroup + 1) >> 1) + 1;
|
|
uint16_t halfw = (smoothwidth + 1) >> 1;
|
|
uint16_t numpeaks = 0;
|
|
uint16_t peakX = 0;
|
|
float peakY = 0;
|
|
uint16_t pindex;
|
|
uint16_t xx[peakgroup];
|
|
float yy[peakgroup];
|
|
memset(xx, 0, peakgroup * sizeof(uint16_t));
|
|
memset(yy, 0, peakgroup * sizeof(float));
|
|
|
|
for (uint16_t j = (halfw << 1) - 2; j < length - smoothwidth - 1; j++) {
|
|
if (d[j] >= 0 && d[j + 1] <= 0 && !is_equal(d[j], d[j + 1])) { // detect zero crossing
|
|
if ((d[j] - d[j + 1]) > slopeThreshold) {
|
|
for (uint16_t k = 0; k < peakgroup; k++) {
|
|
uint16_t groupIndex = j + k - n + 2;
|
|
groupIndex = constrain_int16(groupIndex, 0, length - 1);
|
|
xx[k] = groupIndex;
|
|
yy[k] = input[groupIndex];
|
|
}
|
|
if (peakgroup < 3) {
|
|
vector_max_float(yy, peakgroup, &peakY, &pindex);
|
|
} else {
|
|
peakY = vector_mean_float(yy, peakgroup);
|
|
pindex = val2index(yy, peakgroup, peakY);
|
|
}
|
|
peakX = xx[pindex];
|
|
//hal.console->printf("zero %d, gindex %d -> %d, index %d, val %f\n", j, j -n +2, j+peakgroup -1 - n +2, peakX, peakY);
|
|
// see if we have a valid peak
|
|
if (isfinite(peakY) && peakY >= ampThreshold) {
|
|
// record in amplitude order
|
|
for (int16_t i = 0; i < peaklen; i++) {
|
|
if (i >= numpeaks) {
|
|
peaks[i] = peakX;
|
|
break;
|
|
}
|
|
if (peakY > input[peaks[i]]) {
|
|
for (int16_t a = peaklen - 1; a > i; a--) {
|
|
peaks[a] = peaks[a - 1];
|
|
}
|
|
peaks[i] = peakX;
|
|
break;
|
|
}
|
|
}
|
|
numpeaks++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return numpeaks;
|
|
}
|
|
|
|
// Returns the index and the value of the element of a vector that is closest to val
|
|
uint16_t DSP::val2index(const float* vector, uint16_t n, float val) const
|
|
{
|
|
float minval = FLT_MAX;
|
|
uint16_t minidx = 0;
|
|
for (uint16_t i = 0; i < n; i++) {
|
|
float dif = fabsf(vector[i] - val);
|
|
if (dif < minval) {
|
|
minval = dif;
|
|
minidx = i;
|
|
}
|
|
}
|
|
return minidx;
|
|
}
|
|
|
|
// First derivative of vector using 2-point central difference.
|
|
void DSP::derivative(const float* input, float* output, uint16_t n) const
|
|
{
|
|
output[0] = input[1] - input[0];
|
|
output[n - 1] = input[n - 1] - input[n - 2];
|
|
for (uint16_t i = 1; i < n - 1; i++) {
|
|
output[i] = (input[i + 1] - input[i - 1]) / 2.0f;
|
|
}
|
|
}
|
|
|
|
// smooth a vector in-place
|
|
void DSP::fastsmooth(float* input, uint16_t n, uint16_t smoothwidth) const
|
|
{
|
|
float window[smoothwidth];
|
|
memset(window, 0, smoothwidth * sizeof(float));
|
|
float sumpoints = 0.0f;
|
|
for (int i = 0; i < smoothwidth; i++) {
|
|
sumpoints += input[i];
|
|
}
|
|
uint16_t halfw = (smoothwidth + 1) >> 1;
|
|
for (int i = 0; i < n - smoothwidth; i++) {
|
|
window[i % smoothwidth] = sumpoints;
|
|
sumpoints -= input[i];
|
|
sumpoints += input[i + smoothwidth];
|
|
input[i] = window[(i + smoothwidth - 1) % smoothwidth] / smoothwidth;
|
|
}
|
|
uint16_t last = n - smoothwidth + halfw;
|
|
input[last] = 0.0f;
|
|
for (int i = last + 1; i < n; i++) {
|
|
input[last] += input[i];
|
|
}
|
|
input[n - smoothwidth + halfw] /= smoothwidth;
|
|
for (int i = last + 1; i < n; i++) {
|
|
input[i] = 0.0f;
|
|
}
|
|
}
|
|
|
|
#endif // HAL_WITH_DSP
|