mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-02 14:13:42 -04:00
644 lines
26 KiB
C++
644 lines
26 KiB
C++
#include "AP_NavEKF3.h"
|
|
#include "AP_NavEKF3_core.h"
|
|
|
|
/********************************************************
|
|
* FUSE MEASURED_DATA *
|
|
********************************************************/
|
|
|
|
// select fusion of range beacon measurements
|
|
void NavEKF3_core::SelectRngBcnFusion()
|
|
{
|
|
// read range data from the sensor and check for new data in the buffer
|
|
readRngBcnData();
|
|
|
|
// Determine if we need to fuse range beacon data on this time step
|
|
if (rngBcnDataToFuse) {
|
|
if (PV_AidingMode == AID_ABSOLUTE) {
|
|
if ((frontend->sources.getPosXYSource() == AP_NavEKF_Source::SourceXY::BEACON) && rngBcnAlignmentCompleted) {
|
|
if (!bcnOriginEstInit) {
|
|
bcnOriginEstInit = true;
|
|
bcnPosOffsetNED.x = receiverPos.x - stateStruct.position.x;
|
|
bcnPosOffsetNED.y = receiverPos.y - stateStruct.position.y;
|
|
}
|
|
// beacons are used as the primary means of position reference
|
|
FuseRngBcn();
|
|
} else {
|
|
// If another source (i.e. GPS, ExtNav) is the primary reference, we continue to use the beacon data
|
|
// to calculate an independent position that is used to update the beacon position offset if we need to
|
|
// start using beacon data as the primary reference.
|
|
FuseRngBcnStatic();
|
|
// record that the beacon origin needs to be initialised
|
|
bcnOriginEstInit = false;
|
|
}
|
|
} else {
|
|
// If we aren't able to use the data in the main filter, use a simple 3-state filter to estimate position only
|
|
FuseRngBcnStatic();
|
|
// record that the beacon origin needs to be initialised
|
|
bcnOriginEstInit = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
void NavEKF3_core::FuseRngBcn()
|
|
{
|
|
// declarations
|
|
ftype pn;
|
|
ftype pe;
|
|
ftype pd;
|
|
ftype bcn_pn;
|
|
ftype bcn_pe;
|
|
ftype bcn_pd;
|
|
const ftype R_BCN = sq(MAX(rngBcnDataDelayed.rngErr , 0.1f));
|
|
ftype rngPred;
|
|
|
|
// health is set bad until test passed
|
|
rngBcnHealth = false;
|
|
|
|
if (activeHgtSource != AP_NavEKF_Source::SourceZ::BEACON) {
|
|
// calculate the vertical offset from EKF datum to beacon datum
|
|
CalcRangeBeaconPosDownOffset(R_BCN, stateStruct.position, false);
|
|
} else {
|
|
bcnPosOffsetNED.z = 0.0f;
|
|
}
|
|
|
|
// copy required states to local variable names
|
|
pn = stateStruct.position.x;
|
|
pe = stateStruct.position.y;
|
|
pd = stateStruct.position.z;
|
|
bcn_pn = rngBcnDataDelayed.beacon_posNED.x;
|
|
bcn_pe = rngBcnDataDelayed.beacon_posNED.y;
|
|
bcn_pd = rngBcnDataDelayed.beacon_posNED.z + bcnPosOffsetNED.z;
|
|
|
|
// predicted range
|
|
Vector3F deltaPosNED = stateStruct.position - rngBcnDataDelayed.beacon_posNED;
|
|
rngPred = deltaPosNED.length();
|
|
|
|
// calculate measurement innovation
|
|
innovRngBcn = rngPred - rngBcnDataDelayed.rng;
|
|
|
|
// perform fusion of range measurement
|
|
if (rngPred > 0.1f)
|
|
{
|
|
// calculate observation jacobians
|
|
ftype H_BCN[24];
|
|
memset(H_BCN, 0, sizeof(H_BCN));
|
|
ftype t2 = bcn_pd-pd;
|
|
ftype t3 = bcn_pe-pe;
|
|
ftype t4 = bcn_pn-pn;
|
|
ftype t5 = t2*t2;
|
|
ftype t6 = t3*t3;
|
|
ftype t7 = t4*t4;
|
|
ftype t8 = t5+t6+t7;
|
|
ftype t9 = 1.0f/sqrtF(t8);
|
|
H_BCN[7] = -t4*t9;
|
|
H_BCN[8] = -t3*t9;
|
|
// If we are not using the beacons as a height reference, we pretend that the beacons
|
|
// are at the same height as the flight vehicle when calculating the observation derivatives
|
|
// and Kalman gains
|
|
// TODO - less hacky way of achieving this, preferably using an alternative derivation
|
|
if (activeHgtSource != AP_NavEKF_Source::SourceZ::BEACON) {
|
|
t2 = 0.0f;
|
|
}
|
|
H_BCN[9] = -t2*t9;
|
|
|
|
// calculate Kalman gains
|
|
ftype t10 = P[9][9]*t2*t9;
|
|
ftype t11 = P[8][9]*t3*t9;
|
|
ftype t12 = P[7][9]*t4*t9;
|
|
ftype t13 = t10+t11+t12;
|
|
ftype t14 = t2*t9*t13;
|
|
ftype t15 = P[9][8]*t2*t9;
|
|
ftype t16 = P[8][8]*t3*t9;
|
|
ftype t17 = P[7][8]*t4*t9;
|
|
ftype t18 = t15+t16+t17;
|
|
ftype t19 = t3*t9*t18;
|
|
ftype t20 = P[9][7]*t2*t9;
|
|
ftype t21 = P[8][7]*t3*t9;
|
|
ftype t22 = P[7][7]*t4*t9;
|
|
ftype t23 = t20+t21+t22;
|
|
ftype t24 = t4*t9*t23;
|
|
varInnovRngBcn = R_BCN+t14+t19+t24;
|
|
ftype t26;
|
|
if (varInnovRngBcn >= R_BCN) {
|
|
t26 = 1.0f/varInnovRngBcn;
|
|
faultStatus.bad_rngbcn = false;
|
|
} else {
|
|
// the calculation is badly conditioned, so we cannot perform fusion on this step
|
|
// we reset the covariance matrix and try again next measurement
|
|
CovarianceInit();
|
|
faultStatus.bad_rngbcn = true;
|
|
return;
|
|
}
|
|
|
|
Kfusion[0] = -t26*(P[0][7]*t4*t9+P[0][8]*t3*t9+P[0][9]*t2*t9);
|
|
Kfusion[1] = -t26*(P[1][7]*t4*t9+P[1][8]*t3*t9+P[1][9]*t2*t9);
|
|
Kfusion[2] = -t26*(P[2][7]*t4*t9+P[2][8]*t3*t9+P[2][9]*t2*t9);
|
|
Kfusion[3] = -t26*(P[3][7]*t4*t9+P[3][8]*t3*t9+P[3][9]*t2*t9);
|
|
Kfusion[4] = -t26*(P[4][7]*t4*t9+P[4][8]*t3*t9+P[4][9]*t2*t9);
|
|
Kfusion[5] = -t26*(P[5][7]*t4*t9+P[5][8]*t3*t9+P[5][9]*t2*t9);
|
|
Kfusion[7] = -t26*(t22+P[7][8]*t3*t9+P[7][9]*t2*t9);
|
|
Kfusion[8] = -t26*(t16+P[8][7]*t4*t9+P[8][9]*t2*t9);
|
|
|
|
if (!inhibitDelAngBiasStates) {
|
|
Kfusion[10] = -t26*(P[10][7]*t4*t9+P[10][8]*t3*t9+P[10][9]*t2*t9);
|
|
Kfusion[11] = -t26*(P[11][7]*t4*t9+P[11][8]*t3*t9+P[11][9]*t2*t9);
|
|
Kfusion[12] = -t26*(P[12][7]*t4*t9+P[12][8]*t3*t9+P[12][9]*t2*t9);
|
|
} else {
|
|
// zero indexes 10 to 12
|
|
zero_range(&Kfusion[0], 10, 12);
|
|
}
|
|
|
|
if (!inhibitDelVelBiasStates && !badIMUdata) {
|
|
for (uint8_t index = 0; index < 3; index++) {
|
|
const uint8_t stateIndex = index + 13;
|
|
if (!dvelBiasAxisInhibit[index]) {
|
|
Kfusion[stateIndex] = -t26*(P[stateIndex][7]*t4*t9+P[stateIndex][8]*t3*t9+P[stateIndex][9]*t2*t9);
|
|
} else {
|
|
Kfusion[stateIndex] = 0.0f;
|
|
}
|
|
}
|
|
} else {
|
|
// zero indexes 13 to 15
|
|
zero_range(&Kfusion[0], 13, 15);
|
|
}
|
|
|
|
// only allow the range observations to modify the vertical states if we are using it as a height reference
|
|
if (activeHgtSource == AP_NavEKF_Source::SourceZ::BEACON) {
|
|
Kfusion[6] = -t26*(P[6][7]*t4*t9+P[6][8]*t3*t9+P[6][9]*t2*t9);
|
|
Kfusion[9] = -t26*(t10+P[9][7]*t4*t9+P[9][8]*t3*t9);
|
|
} else {
|
|
Kfusion[6] = 0.0f;
|
|
Kfusion[9] = 0.0f;
|
|
}
|
|
|
|
if (!inhibitMagStates) {
|
|
Kfusion[16] = -t26*(P[16][7]*t4*t9+P[16][8]*t3*t9+P[16][9]*t2*t9);
|
|
Kfusion[17] = -t26*(P[17][7]*t4*t9+P[17][8]*t3*t9+P[17][9]*t2*t9);
|
|
Kfusion[18] = -t26*(P[18][7]*t4*t9+P[18][8]*t3*t9+P[18][9]*t2*t9);
|
|
Kfusion[19] = -t26*(P[19][7]*t4*t9+P[19][8]*t3*t9+P[19][9]*t2*t9);
|
|
Kfusion[20] = -t26*(P[20][7]*t4*t9+P[20][8]*t3*t9+P[20][9]*t2*t9);
|
|
Kfusion[21] = -t26*(P[21][7]*t4*t9+P[21][8]*t3*t9+P[21][9]*t2*t9);
|
|
} else {
|
|
// zero indexes 16 to 21
|
|
zero_range(&Kfusion[0], 16, 21);
|
|
}
|
|
|
|
if (!inhibitWindStates) {
|
|
Kfusion[22] = -t26*(P[22][7]*t4*t9+P[22][8]*t3*t9+P[22][9]*t2*t9);
|
|
Kfusion[23] = -t26*(P[23][7]*t4*t9+P[23][8]*t3*t9+P[23][9]*t2*t9);
|
|
} else {
|
|
// zero indexes 22 to 23
|
|
zero_range(&Kfusion[0], 22, 23);
|
|
}
|
|
|
|
// Calculate innovation using the selected offset value
|
|
Vector3F delta = stateStruct.position - rngBcnDataDelayed.beacon_posNED;
|
|
innovRngBcn = delta.length() - rngBcnDataDelayed.rng;
|
|
|
|
// calculate the innovation consistency test ratio
|
|
rngBcnTestRatio = sq(innovRngBcn) / (sq(MAX(0.01f * (ftype)frontend->_rngBcnInnovGate, 1.0f)) * varInnovRngBcn);
|
|
|
|
// fail if the ratio is > 1, but don't fail if bad IMU data
|
|
rngBcnHealth = ((rngBcnTestRatio < 1.0f) || badIMUdata);
|
|
|
|
// test the ratio before fusing data
|
|
if (rngBcnHealth) {
|
|
|
|
// restart the counter
|
|
lastRngBcnPassTime_ms = imuSampleTime_ms;
|
|
|
|
// correct the covariance P = (I - K*H)*P
|
|
// take advantage of the empty columns in KH to reduce the
|
|
// number of operations
|
|
for (unsigned i = 0; i<=stateIndexLim; i++) {
|
|
for (unsigned j = 0; j<=6; j++) {
|
|
KH[i][j] = 0.0f;
|
|
}
|
|
for (unsigned j = 7; j<=9; j++) {
|
|
KH[i][j] = Kfusion[i] * H_BCN[j];
|
|
}
|
|
for (unsigned j = 10; j<=23; j++) {
|
|
KH[i][j] = 0.0f;
|
|
}
|
|
}
|
|
for (unsigned j = 0; j<=stateIndexLim; j++) {
|
|
for (unsigned i = 0; i<=stateIndexLim; i++) {
|
|
ftype res = 0;
|
|
res += KH[i][7] * P[7][j];
|
|
res += KH[i][8] * P[8][j];
|
|
res += KH[i][9] * P[9][j];
|
|
KHP[i][j] = res;
|
|
}
|
|
}
|
|
// Check that we are not going to drive any variances negative and skip the update if so
|
|
bool healthyFusion = true;
|
|
for (uint8_t i= 0; i<=stateIndexLim; i++) {
|
|
if (KHP[i][i] > P[i][i]) {
|
|
healthyFusion = false;
|
|
}
|
|
}
|
|
if (healthyFusion) {
|
|
// update the covariance matrix
|
|
for (uint8_t i= 0; i<=stateIndexLim; i++) {
|
|
for (uint8_t j= 0; j<=stateIndexLim; j++) {
|
|
P[i][j] = P[i][j] - KHP[i][j];
|
|
}
|
|
}
|
|
|
|
// force the covariance matrix to be symmetrical and limit the variances to prevent ill-conditioning.
|
|
ForceSymmetry();
|
|
ConstrainVariances();
|
|
|
|
// correct the state vector
|
|
for (uint8_t j= 0; j<=stateIndexLim; j++) {
|
|
statesArray[j] = statesArray[j] - Kfusion[j] * innovRngBcn;
|
|
}
|
|
|
|
// record healthy fusion
|
|
faultStatus.bad_rngbcn = false;
|
|
|
|
} else {
|
|
// record bad fusion
|
|
faultStatus.bad_rngbcn = true;
|
|
|
|
}
|
|
}
|
|
|
|
// Update the fusion report
|
|
if (rngBcnFusionReport && rngBcnDataDelayed.beacon_ID < dal.beacon()->count()) {
|
|
rngBcnFusionReport[rngBcnDataDelayed.beacon_ID].beaconPosNED = rngBcnDataDelayed.beacon_posNED;
|
|
rngBcnFusionReport[rngBcnDataDelayed.beacon_ID].innov = innovRngBcn;
|
|
rngBcnFusionReport[rngBcnDataDelayed.beacon_ID].innovVar = varInnovRngBcn;
|
|
rngBcnFusionReport[rngBcnDataDelayed.beacon_ID].rng = rngBcnDataDelayed.rng;
|
|
rngBcnFusionReport[rngBcnDataDelayed.beacon_ID].testRatio = rngBcnTestRatio;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
Use range beacon measurements to calculate a static position using a 3-state EKF algorithm.
|
|
Algorithm based on the following:
|
|
https://github.com/priseborough/InertialNav/blob/master/derivations/range_beacon.m
|
|
*/
|
|
void NavEKF3_core::FuseRngBcnStatic()
|
|
{
|
|
// get the estimated range measurement variance
|
|
const ftype R_RNG = sq(MAX(rngBcnDataDelayed.rngErr , 0.1f));
|
|
|
|
/*
|
|
The first thing to do is to check if we have started the alignment and if not, initialise the
|
|
states and covariance to a first guess. To do this iterate through the available beacons and then
|
|
initialise the initial position to the mean beacon position. The initial position uncertainty
|
|
is set to the mean range measurement.
|
|
*/
|
|
if (!rngBcnAlignmentStarted) {
|
|
if (rngBcnDataDelayed.beacon_ID != lastBeaconIndex) {
|
|
rngBcnPosSum += rngBcnDataDelayed.beacon_posNED;
|
|
lastBeaconIndex = rngBcnDataDelayed.beacon_ID;
|
|
rngSum += rngBcnDataDelayed.rng;
|
|
numBcnMeas++;
|
|
|
|
// capture the beacon vertical spread
|
|
if (rngBcnDataDelayed.beacon_posNED.z > maxBcnPosD) {
|
|
maxBcnPosD = rngBcnDataDelayed.beacon_posNED.z;
|
|
} else if(rngBcnDataDelayed.beacon_posNED.z < minBcnPosD) {
|
|
minBcnPosD = rngBcnDataDelayed.beacon_posNED.z;
|
|
}
|
|
}
|
|
if (numBcnMeas >= 100) {
|
|
rngBcnAlignmentStarted = true;
|
|
ftype tempVar = 1.0f / (ftype)numBcnMeas;
|
|
// initialise the receiver position to the centre of the beacons and at zero height
|
|
receiverPos.x = rngBcnPosSum.x * tempVar;
|
|
receiverPos.y = rngBcnPosSum.y * tempVar;
|
|
receiverPos.z = 0.0f;
|
|
receiverPosCov[2][2] = receiverPosCov[1][1] = receiverPosCov[0][0] = rngSum * tempVar;
|
|
lastBeaconIndex = 0;
|
|
numBcnMeas = 0;
|
|
rngBcnPosSum.zero();
|
|
rngSum = 0.0f;
|
|
}
|
|
}
|
|
|
|
if (rngBcnAlignmentStarted) {
|
|
numBcnMeas++;
|
|
|
|
if (numBcnMeas >= 100) {
|
|
// 100 observations is enough for a stable estimate under most conditions
|
|
// TODO monitor stability of the position estimate
|
|
rngBcnAlignmentCompleted = true;
|
|
|
|
}
|
|
|
|
if (rngBcnAlignmentCompleted) {
|
|
if (activeHgtSource != AP_NavEKF_Source::SourceZ::BEACON) {
|
|
// We are using a different height reference for the main EKF so need to estimate a vertical
|
|
// position offset to be applied to the beacon system that minimises the range innovations
|
|
// The position estimate should be stable after 100 iterations so we use a simple dual
|
|
// hypothesis 1-state EKF to estimate the offset
|
|
Vector3F refPosNED;
|
|
refPosNED.x = receiverPos.x;
|
|
refPosNED.y = receiverPos.y;
|
|
refPosNED.z = stateStruct.position.z;
|
|
CalcRangeBeaconPosDownOffset(R_RNG, refPosNED, true);
|
|
|
|
} else {
|
|
// we are using the beacons as the primary height source, so don't modify their vertical position
|
|
bcnPosOffsetNED.z = 0.0f;
|
|
|
|
}
|
|
} else {
|
|
if (activeHgtSource != AP_NavEKF_Source::SourceZ::BEACON) {
|
|
// The position estimate is not yet stable so we cannot run the 1-state EKF to estimate
|
|
// beacon system vertical position offset. Instead we initialise the dual hypothesis offset states
|
|
// using the beacon vertical position, vertical position estimate relative to the beacon origin
|
|
// and the main EKF vertical position
|
|
|
|
// Calculate the mid vertical position of all beacons
|
|
ftype bcnMidPosD = 0.5f * (minBcnPosD + maxBcnPosD);
|
|
|
|
// calculate the delta to the estimated receiver position
|
|
ftype delta = receiverPos.z - bcnMidPosD;
|
|
|
|
// calcuate the two hypothesis for our vertical position
|
|
ftype receverPosDownMax;
|
|
ftype receverPosDownMin;
|
|
if (delta >= 0.0f) {
|
|
receverPosDownMax = receiverPos.z;
|
|
receverPosDownMin = receiverPos.z - 2.0f * delta;
|
|
} else {
|
|
receverPosDownMax = receiverPos.z - 2.0f * delta;
|
|
receverPosDownMin = receiverPos.z;
|
|
}
|
|
|
|
bcnPosDownOffsetMax = stateStruct.position.z - receverPosDownMin;
|
|
bcnPosDownOffsetMin = stateStruct.position.z - receverPosDownMax;
|
|
} else {
|
|
// We are using the beacons as the primary height reference, so don't modify their vertical position
|
|
bcnPosOffsetNED.z = 0.0f;
|
|
}
|
|
}
|
|
|
|
// Add some process noise to the states at each time step
|
|
for (uint8_t i= 0; i<=2; i++) {
|
|
receiverPosCov[i][i] += 0.1f;
|
|
}
|
|
|
|
// calculate the observation jacobian
|
|
ftype t2 = rngBcnDataDelayed.beacon_posNED.z - receiverPos.z + bcnPosOffsetNED.z;
|
|
ftype t3 = rngBcnDataDelayed.beacon_posNED.y - receiverPos.y;
|
|
ftype t4 = rngBcnDataDelayed.beacon_posNED.x - receiverPos.x;
|
|
ftype t5 = t2*t2;
|
|
ftype t6 = t3*t3;
|
|
ftype t7 = t4*t4;
|
|
ftype t8 = t5+t6+t7;
|
|
if (t8 < 0.1f) {
|
|
// calculation will be badly conditioned
|
|
return;
|
|
}
|
|
ftype t9 = 1.0f/sqrtF(t8);
|
|
ftype t10 = rngBcnDataDelayed.beacon_posNED.x*2.0f;
|
|
ftype t15 = receiverPos.x*2.0f;
|
|
ftype t11 = t10-t15;
|
|
ftype t12 = rngBcnDataDelayed.beacon_posNED.y*2.0f;
|
|
ftype t14 = receiverPos.y*2.0f;
|
|
ftype t13 = t12-t14;
|
|
ftype t16 = rngBcnDataDelayed.beacon_posNED.z*2.0f;
|
|
ftype t18 = receiverPos.z*2.0f;
|
|
ftype t17 = t16-t18;
|
|
ftype H_RNG[3];
|
|
H_RNG[0] = -t9*t11*0.5f;
|
|
H_RNG[1] = -t9*t13*0.5f;
|
|
H_RNG[2] = -t9*t17*0.5f;
|
|
|
|
// calculate the Kalman gains
|
|
ftype t19 = receiverPosCov[0][0]*t9*t11*0.5f;
|
|
ftype t20 = receiverPosCov[1][1]*t9*t13*0.5f;
|
|
ftype t21 = receiverPosCov[0][1]*t9*t11*0.5f;
|
|
ftype t22 = receiverPosCov[2][1]*t9*t17*0.5f;
|
|
ftype t23 = t20+t21+t22;
|
|
ftype t24 = t9*t13*t23*0.5f;
|
|
ftype t25 = receiverPosCov[1][2]*t9*t13*0.5f;
|
|
ftype t26 = receiverPosCov[0][2]*t9*t11*0.5f;
|
|
ftype t27 = receiverPosCov[2][2]*t9*t17*0.5f;
|
|
ftype t28 = t25+t26+t27;
|
|
ftype t29 = t9*t17*t28*0.5f;
|
|
ftype t30 = receiverPosCov[1][0]*t9*t13*0.5f;
|
|
ftype t31 = receiverPosCov[2][0]*t9*t17*0.5f;
|
|
ftype t32 = t19+t30+t31;
|
|
ftype t33 = t9*t11*t32*0.5f;
|
|
varInnovRngBcn = R_RNG+t24+t29+t33;
|
|
ftype t35 = 1.0f/varInnovRngBcn;
|
|
ftype K_RNG[3];
|
|
K_RNG[0] = -t35*(t19+receiverPosCov[0][1]*t9*t13*0.5f+receiverPosCov[0][2]*t9*t17*0.5f);
|
|
K_RNG[1] = -t35*(t20+receiverPosCov[1][0]*t9*t11*0.5f+receiverPosCov[1][2]*t9*t17*0.5f);
|
|
K_RNG[2] = -t35*(t27+receiverPosCov[2][0]*t9*t11*0.5f+receiverPosCov[2][1]*t9*t13*0.5f);
|
|
|
|
// calculate range measurement innovation
|
|
Vector3F deltaPosNED = receiverPos - rngBcnDataDelayed.beacon_posNED;
|
|
deltaPosNED.z -= bcnPosOffsetNED.z;
|
|
innovRngBcn = deltaPosNED.length() - rngBcnDataDelayed.rng;
|
|
|
|
// calculate the innovation consistency test ratio
|
|
rngBcnTestRatio = sq(innovRngBcn) / (sq(MAX(0.01f * (ftype)frontend->_rngBcnInnovGate, 1.0f)) * varInnovRngBcn);
|
|
|
|
// fail if the ratio is > 1, but don't fail if bad IMU data
|
|
rngBcnHealth = ((rngBcnTestRatio < 1.0f) || badIMUdata || !rngBcnAlignmentCompleted);
|
|
|
|
// test the ratio before fusing data
|
|
if (rngBcnHealth) {
|
|
|
|
// update the state
|
|
receiverPos.x -= K_RNG[0] * innovRngBcn;
|
|
receiverPos.y -= K_RNG[1] * innovRngBcn;
|
|
receiverPos.z -= K_RNG[2] * innovRngBcn;
|
|
|
|
// calculate the covariance correction
|
|
for (unsigned i = 0; i<=2; i++) {
|
|
for (unsigned j = 0; j<=2; j++) {
|
|
KH[i][j] = K_RNG[i] * H_RNG[j];
|
|
}
|
|
}
|
|
for (unsigned j = 0; j<=2; j++) {
|
|
for (unsigned i = 0; i<=2; i++) {
|
|
ftype res = 0;
|
|
res += KH[i][0] * receiverPosCov[0][j];
|
|
res += KH[i][1] * receiverPosCov[1][j];
|
|
res += KH[i][2] * receiverPosCov[2][j];
|
|
KHP[i][j] = res;
|
|
}
|
|
}
|
|
|
|
// prevent negative variances
|
|
for (uint8_t i= 0; i<=2; i++) {
|
|
if (receiverPosCov[i][i] < 0.0f) {
|
|
receiverPosCov[i][i] = 0.0f;
|
|
KHP[i][i] = 0.0f;
|
|
} else if (KHP[i][i] > receiverPosCov[i][i]) {
|
|
KHP[i][i] = receiverPosCov[i][i];
|
|
}
|
|
}
|
|
|
|
// apply the covariance correction
|
|
for (uint8_t i= 0; i<=2; i++) {
|
|
for (uint8_t j= 0; j<=2; j++) {
|
|
receiverPosCov[i][j] -= KHP[i][j];
|
|
}
|
|
}
|
|
|
|
// ensure the covariance matrix is symmetric
|
|
for (uint8_t i=1; i<=2; i++) {
|
|
for (uint8_t j=0; j<=i-1; j++) {
|
|
ftype temp = 0.5f*(receiverPosCov[i][j] + receiverPosCov[j][i]);
|
|
receiverPosCov[i][j] = temp;
|
|
receiverPosCov[j][i] = temp;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
if (numBcnMeas >= 100) {
|
|
// 100 observations is enough for a stable estimate under most conditions
|
|
// TODO monitor stability of the position estimate
|
|
rngBcnAlignmentCompleted = true;
|
|
}
|
|
// Update the fusion report
|
|
if (rngBcnFusionReport && rngBcnDataDelayed.beacon_ID < dal.beacon()->count()) {
|
|
rngBcnFusionReport[rngBcnDataDelayed.beacon_ID].beaconPosNED = rngBcnDataDelayed.beacon_posNED;
|
|
rngBcnFusionReport[rngBcnDataDelayed.beacon_ID].innov = innovRngBcn;
|
|
rngBcnFusionReport[rngBcnDataDelayed.beacon_ID].innovVar = varInnovRngBcn;
|
|
rngBcnFusionReport[rngBcnDataDelayed.beacon_ID].rng = rngBcnDataDelayed.rng;
|
|
rngBcnFusionReport[rngBcnDataDelayed.beacon_ID].testRatio = rngBcnTestRatio;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
Run a single state Kalman filter to estimate the vertical position offset of the range beacon constellation
|
|
Calculate using a high and low hypothesis and select the hypothesis with the lowest innovation sequence
|
|
*/
|
|
void NavEKF3_core::CalcRangeBeaconPosDownOffset(ftype obsVar, Vector3F &vehiclePosNED, bool aligning)
|
|
{
|
|
// Handle height offsets between the primary height source and the range beacons by estimating
|
|
// the beacon systems global vertical position offset using a single state Kalman filter
|
|
// The estimated offset is used to correct the beacon height when calculating innovations
|
|
// A high and low estimate is calculated to handle the ambiguity in height associated with beacon positions that are co-planar
|
|
// The main filter then uses the offset with the smaller innovations
|
|
|
|
ftype innov; // range measurement innovation (m)
|
|
ftype innovVar; // range measurement innovation variance (m^2)
|
|
ftype gain; // Kalman gain
|
|
ftype obsDeriv; // derivative of observation relative to state
|
|
|
|
const ftype stateNoiseVar = 0.1f; // State process noise variance
|
|
const ftype filtAlpha = 0.1f; // LPF constant
|
|
const ftype innovGateWidth = 5.0f; // width of innovation consistency check gate in std
|
|
|
|
// estimate upper value for offset
|
|
|
|
// calculate observation derivative
|
|
ftype t2 = rngBcnDataDelayed.beacon_posNED.z - vehiclePosNED.z + bcnPosDownOffsetMax;
|
|
ftype t3 = rngBcnDataDelayed.beacon_posNED.y - vehiclePosNED.y;
|
|
ftype t4 = rngBcnDataDelayed.beacon_posNED.x - vehiclePosNED.x;
|
|
ftype t5 = t2*t2;
|
|
ftype t6 = t3*t3;
|
|
ftype t7 = t4*t4;
|
|
ftype t8 = t5+t6+t7;
|
|
ftype t9;
|
|
if (t8 > 0.1f) {
|
|
t9 = 1.0f/sqrtF(t8);
|
|
obsDeriv = t2*t9;
|
|
|
|
// Calculate innovation
|
|
innov = sqrtF(t8) - rngBcnDataDelayed.rng;
|
|
|
|
// covariance prediction
|
|
bcnPosOffsetMaxVar += stateNoiseVar;
|
|
|
|
// calculate the innovation variance
|
|
innovVar = obsDeriv * bcnPosOffsetMaxVar * obsDeriv + obsVar;
|
|
innovVar = MAX(innovVar, obsVar);
|
|
|
|
// calculate the Kalman gain
|
|
gain = (bcnPosOffsetMaxVar * obsDeriv) / innovVar;
|
|
|
|
// calculate a filtered state change magnitude to be used to select between the high or low offset
|
|
ftype stateChange = innov * gain;
|
|
maxOffsetStateChangeFilt = (1.0f - filtAlpha) * maxOffsetStateChangeFilt + fminF(fabsF(filtAlpha * stateChange) , 1.0f);
|
|
|
|
// Reject range innovation spikes using a 5-sigma threshold unless aligning
|
|
if ((sq(innov) < sq(innovGateWidth) * innovVar) || aligning) {
|
|
|
|
// state update
|
|
bcnPosDownOffsetMax -= stateChange;
|
|
|
|
// covariance update
|
|
bcnPosOffsetMaxVar -= gain * obsDeriv * bcnPosOffsetMaxVar;
|
|
bcnPosOffsetMaxVar = MAX(bcnPosOffsetMaxVar, 0.0f);
|
|
}
|
|
}
|
|
|
|
// estimate lower value for offset
|
|
|
|
// calculate observation derivative
|
|
t2 = rngBcnDataDelayed.beacon_posNED.z - vehiclePosNED.z + bcnPosDownOffsetMin;
|
|
t5 = t2*t2;
|
|
t8 = t5+t6+t7;
|
|
if (t8 > 0.1f) {
|
|
t9 = 1.0f/sqrtF(t8);
|
|
obsDeriv = t2*t9;
|
|
|
|
// Calculate innovation
|
|
innov = sqrtF(t8) - rngBcnDataDelayed.rng;
|
|
|
|
// covariance prediction
|
|
bcnPosOffsetMinVar += stateNoiseVar;
|
|
|
|
// calculate the innovation variance
|
|
innovVar = obsDeriv * bcnPosOffsetMinVar * obsDeriv + obsVar;
|
|
innovVar = MAX(innovVar, obsVar);
|
|
|
|
// calculate the Kalman gain
|
|
gain = (bcnPosOffsetMinVar * obsDeriv) / innovVar;
|
|
|
|
// calculate a filtered state change magnitude to be used to select between the high or low offset
|
|
ftype stateChange = innov * gain;
|
|
minOffsetStateChangeFilt = (1.0f - filtAlpha) * minOffsetStateChangeFilt + fminF(fabsF(filtAlpha * stateChange) , 1.0f);
|
|
|
|
// Reject range innovation spikes using a 5-sigma threshold unless aligning
|
|
if ((sq(innov) < sq(innovGateWidth) * innovVar) || aligning) {
|
|
|
|
// state update
|
|
bcnPosDownOffsetMin -= stateChange;
|
|
|
|
// covariance update
|
|
bcnPosOffsetMinVar -= gain * obsDeriv * bcnPosOffsetMinVar;
|
|
bcnPosOffsetMinVar = MAX(bcnPosOffsetMinVar, 0.0f);
|
|
}
|
|
}
|
|
|
|
// calculate the mid vertical position of all beacons
|
|
ftype bcnMidPosD = 0.5f * (minBcnPosD + maxBcnPosD);
|
|
|
|
// ensure the two beacon vertical offset hypothesis place the mid point of the beacons below and above the flight vehicle
|
|
bcnPosDownOffsetMax = MAX(bcnPosDownOffsetMax, vehiclePosNED.z - bcnMidPosD + 0.5f);
|
|
bcnPosDownOffsetMin = MIN(bcnPosDownOffsetMin, vehiclePosNED.z - bcnMidPosD - 0.5f);
|
|
|
|
// calculate the innovation for the main filter using the offset that is most stable
|
|
// apply hysteresis to prevent rapid switching
|
|
if (!usingMinHypothesis && (minOffsetStateChangeFilt < (0.8f * maxOffsetStateChangeFilt))) {
|
|
usingMinHypothesis = true;
|
|
} else if (usingMinHypothesis && (maxOffsetStateChangeFilt < (0.8f * minOffsetStateChangeFilt))) {
|
|
usingMinHypothesis = false;
|
|
}
|
|
if (usingMinHypothesis) {
|
|
bcnPosOffsetNED.z = bcnPosDownOffsetMin;
|
|
} else {
|
|
bcnPosOffsetNED.z = bcnPosDownOffsetMax;
|
|
}
|
|
|
|
// apply the vertical offset to the beacon positions
|
|
rngBcnDataDelayed.beacon_posNED.z += bcnPosOffsetNED.z;
|
|
}
|
|
|