mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-02 14:13:42 -04:00
368 lines
10 KiB
C++
368 lines
10 KiB
C++
/// @file AC_PID.cpp
|
|
/// @brief Generic PID algorithm
|
|
|
|
#include <AP_Math/AP_Math.h>
|
|
#include "AC_PID.h"
|
|
|
|
const AP_Param::GroupInfo AC_PID::var_info[] = {
|
|
// @Param: P
|
|
// @DisplayName: PID Proportional Gain
|
|
// @Description: P Gain which produces an output value that is proportional to the current error value
|
|
AP_GROUPINFO("P", 0, AC_PID, _kp, 0),
|
|
|
|
// @Param: I
|
|
// @DisplayName: PID Integral Gain
|
|
// @Description: I Gain which produces an output that is proportional to both the magnitude and the duration of the error
|
|
AP_GROUPINFO("I", 1, AC_PID, _ki, 0),
|
|
|
|
// @Param: D
|
|
// @DisplayName: PID Derivative Gain
|
|
// @Description: D Gain which produces an output that is proportional to the rate of change of the error
|
|
AP_GROUPINFO("D", 2, AC_PID, _kd, 0),
|
|
|
|
// 3 was for uint16 IMAX
|
|
|
|
// @Param: FF
|
|
// @DisplayName: FF FeedForward Gain
|
|
// @Description: FF Gain which produces an output value that is proportional to the demanded input
|
|
AP_GROUPINFO("FF", 4, AC_PID, _kff, 0),
|
|
|
|
// @Param: IMAX
|
|
// @DisplayName: PID Integral Maximum
|
|
// @Description: The maximum/minimum value that the I term can output
|
|
AP_GROUPINFO("IMAX", 5, AC_PID, _kimax, 0),
|
|
|
|
// 6 was for float FILT
|
|
|
|
// 7 is for float ILMI and FF
|
|
|
|
// index 8 was for AFF
|
|
|
|
// @Param: FLTT
|
|
// @DisplayName: PID Target filter frequency in Hz
|
|
// @Description: Target filter frequency in Hz
|
|
// @Units: Hz
|
|
AP_GROUPINFO("FLTT", 9, AC_PID, _filt_T_hz, AC_PID_TFILT_HZ_DEFAULT),
|
|
|
|
// @Param: FLTE
|
|
// @DisplayName: PID Error filter frequency in Hz
|
|
// @Description: Error filter frequency in Hz
|
|
// @Units: Hz
|
|
AP_GROUPINFO("FLTE", 10, AC_PID, _filt_E_hz, AC_PID_EFILT_HZ_DEFAULT),
|
|
|
|
// @Param: FLTD
|
|
// @DisplayName: PID Derivative term filter frequency in Hz
|
|
// @Description: Derivative filter frequency in Hz
|
|
// @Units: Hz
|
|
AP_GROUPINFO("FLTD", 11, AC_PID, _filt_D_hz, AC_PID_DFILT_HZ_DEFAULT),
|
|
|
|
// @Param: SMAX
|
|
// @DisplayName: Slew rate limit
|
|
// @Description: Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.
|
|
// @Range: 0 200
|
|
// @Increment: 0.5
|
|
// @User: Advanced
|
|
AP_GROUPINFO("SMAX", 12, AC_PID, _slew_rate_max, 0),
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
// Constructor
|
|
AC_PID::AC_PID(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_T_hz, float initial_filt_E_hz, float initial_filt_D_hz,
|
|
float dt, float initial_srmax, float initial_srtau):
|
|
_dt(dt)
|
|
{
|
|
// load parameter values from eeprom
|
|
AP_Param::setup_object_defaults(this, var_info);
|
|
|
|
_kp = initial_p;
|
|
_ki = initial_i;
|
|
_kd = initial_d;
|
|
_kff = initial_ff;
|
|
_kimax = fabsf(initial_imax);
|
|
filt_T_hz(initial_filt_T_hz);
|
|
filt_E_hz(initial_filt_E_hz);
|
|
filt_D_hz(initial_filt_D_hz);
|
|
_slew_rate_max.set(initial_srmax);
|
|
_slew_rate_tau.set(initial_srtau);
|
|
|
|
// reset input filter to first value received
|
|
_flags._reset_filter = true;
|
|
|
|
memset(&_pid_info, 0, sizeof(_pid_info));
|
|
|
|
// slew limit scaler allows for plane to use degrees/sec slew
|
|
// limit
|
|
_slew_limit_scale = 1;
|
|
}
|
|
|
|
// set_dt - set time step in seconds
|
|
void AC_PID::set_dt(float dt)
|
|
{
|
|
// set dt and calculate the input filter alpha
|
|
_dt = dt;
|
|
}
|
|
|
|
// filt_T_hz - set target filter hz
|
|
void AC_PID::filt_T_hz(float hz)
|
|
{
|
|
_filt_T_hz.set(fabsf(hz));
|
|
}
|
|
|
|
// filt_E_hz - set error filter hz
|
|
void AC_PID::filt_E_hz(float hz)
|
|
{
|
|
_filt_E_hz.set(fabsf(hz));
|
|
}
|
|
|
|
// filt_D_hz - set derivative filter hz
|
|
void AC_PID::filt_D_hz(float hz)
|
|
{
|
|
_filt_D_hz.set(fabsf(hz));
|
|
}
|
|
|
|
// update_all - set target and measured inputs to PID controller and calculate outputs
|
|
// target and error are filtered
|
|
// the derivative is then calculated and filtered
|
|
// the integral is then updated based on the setting of the limit flag
|
|
float AC_PID::update_all(float target, float measurement, bool limit)
|
|
{
|
|
// don't process inf or NaN
|
|
if (!isfinite(target) || !isfinite(measurement)) {
|
|
return 0.0f;
|
|
}
|
|
|
|
// reset input filter to value received
|
|
if (_flags._reset_filter) {
|
|
_flags._reset_filter = false;
|
|
_target = target;
|
|
_error = _target - measurement;
|
|
_derivative = 0.0f;
|
|
} else {
|
|
float error_last = _error;
|
|
_target += get_filt_T_alpha() * (target - _target);
|
|
_error += get_filt_E_alpha() * ((_target - measurement) - _error);
|
|
|
|
// calculate and filter derivative
|
|
if (_dt > 0.0f) {
|
|
float derivative = (_error - error_last) / _dt;
|
|
_derivative += get_filt_D_alpha() * (derivative - _derivative);
|
|
}
|
|
}
|
|
|
|
// update I term
|
|
update_i(limit);
|
|
|
|
float P_out = (_error * _kp);
|
|
float D_out = (_derivative * _kd);
|
|
|
|
// calculate slew limit modifier for P+D
|
|
_pid_info.Dmod = _slew_limiter.modifier((_pid_info.P + _pid_info.D) * _slew_limit_scale, _dt);
|
|
_pid_info.slew_rate = _slew_limiter.get_slew_rate();
|
|
|
|
P_out *= _pid_info.Dmod;
|
|
D_out *= _pid_info.Dmod;
|
|
|
|
_pid_info.target = _target;
|
|
_pid_info.actual = measurement;
|
|
_pid_info.error = _error;
|
|
_pid_info.P = P_out;
|
|
_pid_info.D = D_out;
|
|
|
|
return P_out + _integrator + D_out;
|
|
}
|
|
|
|
// update_error - set error input to PID controller and calculate outputs
|
|
// target is set to zero and error is set and filtered
|
|
// the derivative then is calculated and filtered
|
|
// the integral is then updated based on the setting of the limit flag
|
|
// Target and Measured must be set manually for logging purposes.
|
|
// todo: remove function when it is no longer used.
|
|
float AC_PID::update_error(float error, bool limit)
|
|
{
|
|
// don't process inf or NaN
|
|
if (!isfinite(error)) {
|
|
return 0.0f;
|
|
}
|
|
|
|
_target = 0.0f;
|
|
|
|
// reset input filter to value received
|
|
if (_flags._reset_filter) {
|
|
_flags._reset_filter = false;
|
|
_error = error;
|
|
_derivative = 0.0f;
|
|
} else {
|
|
float error_last = _error;
|
|
_error += get_filt_E_alpha() * (error - _error);
|
|
|
|
// calculate and filter derivative
|
|
if (_dt > 0.0f) {
|
|
float derivative = (_error - error_last) / _dt;
|
|
_derivative += get_filt_D_alpha() * (derivative - _derivative);
|
|
}
|
|
}
|
|
|
|
// update I term
|
|
update_i(limit);
|
|
|
|
float P_out = (_error * _kp);
|
|
float D_out = (_derivative * _kd);
|
|
|
|
// calculate slew limit modifier for P+D
|
|
_pid_info.Dmod = _slew_limiter.modifier((_pid_info.P + _pid_info.D) * _slew_limit_scale, _dt);
|
|
_pid_info.slew_rate = _slew_limiter.get_slew_rate();
|
|
|
|
P_out *= _pid_info.Dmod;
|
|
D_out *= _pid_info.Dmod;
|
|
|
|
_pid_info.target = 0.0f;
|
|
_pid_info.actual = 0.0f;
|
|
_pid_info.error = _error;
|
|
_pid_info.P = P_out;
|
|
_pid_info.D = D_out;
|
|
|
|
return P_out + _integrator + D_out;
|
|
}
|
|
|
|
// update_i - update the integral
|
|
// If the limit flag is set the integral is only allowed to shrink
|
|
void AC_PID::update_i(bool limit)
|
|
{
|
|
if (!is_zero(_ki) && is_positive(_dt)) {
|
|
// Ensure that integrator can only be reduced if the output is saturated
|
|
if (!limit || ((is_positive(_integrator) && is_negative(_error)) || (is_negative(_integrator) && is_positive(_error)))) {
|
|
_integrator += ((float)_error * _ki) * _dt;
|
|
_integrator = constrain_float(_integrator, -_kimax, _kimax);
|
|
}
|
|
} else {
|
|
_integrator = 0.0f;
|
|
}
|
|
_pid_info.I = _integrator;
|
|
_pid_info.limit = limit;
|
|
}
|
|
|
|
float AC_PID::get_p() const
|
|
{
|
|
return _error * _kp;
|
|
}
|
|
|
|
float AC_PID::get_i() const
|
|
{
|
|
return _integrator;
|
|
}
|
|
|
|
float AC_PID::get_d() const
|
|
{
|
|
return _kd * _derivative;
|
|
}
|
|
|
|
float AC_PID::get_ff()
|
|
{
|
|
_pid_info.FF = _target * _kff;
|
|
return _target * _kff;
|
|
}
|
|
|
|
void AC_PID::reset_I()
|
|
{
|
|
_integrator = 0;
|
|
}
|
|
|
|
void AC_PID::reset_I_smoothly()
|
|
{
|
|
float reset_time = AC_PID_RESET_TC * 3.0f;
|
|
uint64_t now = AP_HAL::micros64();
|
|
|
|
if ((now - _reset_last_update) > 5e5 ) {
|
|
_reset_counter = 0;
|
|
}
|
|
if ((float)_reset_counter < (reset_time/_dt)) {
|
|
_integrator = _integrator - (_dt / (_dt + AC_PID_RESET_TC)) * _integrator;
|
|
_reset_counter++;
|
|
} else {
|
|
_integrator = 0;
|
|
}
|
|
_reset_last_update = now;
|
|
}
|
|
|
|
void AC_PID::load_gains()
|
|
{
|
|
_kp.load();
|
|
_ki.load();
|
|
_kd.load();
|
|
_kff.load();
|
|
_kimax.load();
|
|
_kimax = fabsf(_kimax);
|
|
_filt_T_hz.load();
|
|
_filt_E_hz.load();
|
|
_filt_D_hz.load();
|
|
}
|
|
|
|
// save_gains - save gains to eeprom
|
|
void AC_PID::save_gains()
|
|
{
|
|
_kp.save();
|
|
_ki.save();
|
|
_kd.save();
|
|
_kff.save();
|
|
_kimax.save();
|
|
_filt_T_hz.save();
|
|
_filt_E_hz.save();
|
|
_filt_D_hz.save();
|
|
}
|
|
|
|
/// Overload the function call operator to permit easy initialisation
|
|
void AC_PID::operator()(float p_val, float i_val, float d_val, float ff_val, float imax_val, float input_filt_T_hz, float input_filt_E_hz, float input_filt_D_hz, float dt)
|
|
{
|
|
_kp = p_val;
|
|
_ki = i_val;
|
|
_kd = d_val;
|
|
_kff = ff_val;
|
|
_kimax = fabsf(imax_val);
|
|
_filt_T_hz = input_filt_T_hz;
|
|
_filt_E_hz = input_filt_E_hz;
|
|
_filt_D_hz = input_filt_D_hz;
|
|
_dt = dt;
|
|
}
|
|
|
|
// get_filt_T_alpha - get the target filter alpha
|
|
float AC_PID::get_filt_T_alpha() const
|
|
{
|
|
return get_filt_alpha(_filt_T_hz);
|
|
}
|
|
|
|
// get_filt_E_alpha - get the error filter alpha
|
|
float AC_PID::get_filt_E_alpha() const
|
|
{
|
|
return get_filt_alpha(_filt_E_hz);
|
|
}
|
|
|
|
// get_filt_D_alpha - get the derivative filter alpha
|
|
float AC_PID::get_filt_D_alpha() const
|
|
{
|
|
return get_filt_alpha(_filt_D_hz);
|
|
}
|
|
|
|
// get_filt_alpha - calculate a filter alpha
|
|
float AC_PID::get_filt_alpha(float filt_hz) const
|
|
{
|
|
return calc_lowpass_alpha_dt(_dt, filt_hz);
|
|
}
|
|
|
|
void AC_PID::set_integrator(float target, float measurement, float i)
|
|
{
|
|
set_integrator(target - measurement, i);
|
|
}
|
|
|
|
void AC_PID::set_integrator(float error, float i)
|
|
{
|
|
_integrator = constrain_float(i - error * _kp, -_kimax, _kimax);
|
|
_pid_info.I = _integrator;
|
|
}
|
|
|
|
void AC_PID::set_integrator(float i)
|
|
{
|
|
_integrator = constrain_float(i, -_kimax, _kimax);
|
|
_pid_info.I = _integrator;
|
|
}
|