ardupilot/ArduPlane/radio.cpp
James Stoyell 4e7e84fc99 Plane: Modified last_valid_rc_ms AFS failsafe input to work when standard failsafe is on
Ran into a bug on our physical plane where failsafe.last_valid_rc_ms was not recognizing that the transmitter had failed. This is likely due to how the standard failsafe works in receiving lower-than-possible throttle values. So in order to account for this, I added a new variable to the failsafe, AFS_last_valid_rc_ms, and I update it only if the ch3_failsafe (the throttle failsafe) is not on. If the throttle failsafe is on, that means that the plane has indeed lost transmitter input, so the AFS needs to recognize that.
2016-04-22 11:48:36 -07:00

360 lines
12 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include "Plane.h"
//Function that will read the radio data, limit servos and trigger a failsafe
// ----------------------------------------------------------------------------
/*
allow for runtime change of control channel ordering
*/
void Plane::set_control_channels(void)
{
if (g.rudder_only) {
// in rudder only mode the roll and rudder channels are the
// same.
channel_roll = RC_Channel::rc_channel(rcmap.yaw()-1);
} else {
channel_roll = RC_Channel::rc_channel(rcmap.roll()-1);
}
channel_pitch = RC_Channel::rc_channel(rcmap.pitch()-1);
channel_throttle = RC_Channel::rc_channel(rcmap.throttle()-1);
channel_rudder = RC_Channel::rc_channel(rcmap.yaw()-1);
// set rc channel ranges
channel_roll->set_angle(SERVO_MAX);
channel_pitch->set_angle(SERVO_MAX);
channel_rudder->set_angle(SERVO_MAX);
if (aparm.throttle_min >= 0) {
// normal operation
channel_throttle->set_range(0, 100);
} else {
// reverse thrust
channel_throttle->set_angle(100);
}
if (!arming.is_armed() && arming.arming_required() == AP_Arming::YES_MIN_PWM) {
hal.rcout->set_safety_pwm(1UL<<(rcmap.throttle()-1), throttle_min());
}
// setup correct scaling for ESCs like the UAVCAN PX4ESC which
// take a proportion of speed
hal.rcout->set_esc_scaling(channel_throttle->radio_min, channel_throttle->radio_max);
}
/*
initialise RC input channels
*/
void Plane::init_rc_in()
{
// set rc dead zones
channel_roll->set_default_dead_zone(30);
channel_pitch->set_default_dead_zone(30);
channel_rudder->set_default_dead_zone(30);
channel_throttle->set_default_dead_zone(30);
}
/*
initialise RC output channels
*/
void Plane::init_rc_out()
{
channel_roll->enable_out();
channel_pitch->enable_out();
/*
change throttle trim to minimum throttle. This prevents a
configuration error where the user sets CH3_TRIM incorrectly and
the motor may start on power up
*/
channel_throttle->radio_trim = throttle_min();
if (arming.arming_required() != AP_Arming::YES_ZERO_PWM) {
channel_throttle->enable_out();
}
channel_rudder->enable_out();
update_aux();
RC_Channel_aux::enable_aux_servos();
// Initialization of servo outputs
RC_Channel::output_trim_all();
// setup PWM values to send if the FMU firmware dies
RC_Channel::setup_failsafe_trim_all();
// setup PX4 to output the min throttle when safety off if arming
// is setup for min on disarm
if (arming.arming_required() == AP_Arming::YES_MIN_PWM) {
hal.rcout->set_safety_pwm(1UL<<(rcmap.throttle()-1), throttle_min());
}
}
/*
check for pilot input on rudder stick for arming/disarming
*/
void Plane::rudder_arm_disarm_check()
{
AP_Arming::ArmingRudder arming_rudder = arming.rudder_arming();
if (arming_rudder == AP_Arming::ARMING_RUDDER_DISABLED) {
//parameter disallows rudder arming/disabling
return;
}
// if throttle is not down, then pilot cannot rudder arm/disarm
if (channel_throttle->control_in != 0){
rudder_arm_timer = 0;
return;
}
// if not in a manual throttle mode then disallow rudder arming/disarming
if (auto_throttle_mode ) {
rudder_arm_timer = 0;
return;
}
if (!arming.is_armed()) {
// when not armed, full right rudder starts arming counter
if (channel_rudder->control_in > 4000) {
uint32_t now = millis();
if (rudder_arm_timer == 0 ||
now - rudder_arm_timer < 3000) {
if (rudder_arm_timer == 0) {
rudder_arm_timer = now;
}
} else {
//time to arm!
arm_motors(AP_Arming::RUDDER);
rudder_arm_timer = 0;
}
} else {
// not at full right rudder
rudder_arm_timer = 0;
}
} else if (arming_rudder == AP_Arming::ARMING_RUDDER_ARMDISARM && !is_flying()) {
// when armed and not flying, full left rudder starts disarming counter
if (channel_rudder->control_in < -4000) {
uint32_t now = millis();
if (rudder_arm_timer == 0 ||
now - rudder_arm_timer < 3000) {
if (rudder_arm_timer == 0) {
rudder_arm_timer = now;
}
} else {
//time to disarm!
disarm_motors();
rudder_arm_timer = 0;
}
} else {
// not at full left rudder
rudder_arm_timer = 0;
}
}
}
void Plane::read_radio()
{
if (!hal.rcin->new_input()) {
control_failsafe(channel_throttle->radio_in);
return;
}
if(!failsafe.ch3_failsafe)
{
failsafe.AFS_last_valid_rc_ms = millis();
}
failsafe.last_valid_rc_ms = millis();
elevon.ch1_temp = channel_roll->read();
elevon.ch2_temp = channel_pitch->read();
uint16_t pwm_roll, pwm_pitch;
if (g.mix_mode == 0) {
pwm_roll = elevon.ch1_temp;
pwm_pitch = elevon.ch2_temp;
}else{
pwm_roll = BOOL_TO_SIGN(g.reverse_elevons) * (BOOL_TO_SIGN(g.reverse_ch2_elevon) * int16_t(elevon.ch2_temp - elevon.trim2) - BOOL_TO_SIGN(g.reverse_ch1_elevon) * int16_t(elevon.ch1_temp - elevon.trim1)) / 2 + 1500;
pwm_pitch = (BOOL_TO_SIGN(g.reverse_ch2_elevon) * int16_t(elevon.ch2_temp - elevon.trim2) + BOOL_TO_SIGN(g.reverse_ch1_elevon) * int16_t(elevon.ch1_temp - elevon.trim1)) / 2 + 1500;
}
RC_Channel::set_pwm_all();
if (control_mode == TRAINING) {
// in training mode we don't want to use a deadzone, as we
// want manual pass through when not exceeding attitude limits
channel_roll->set_pwm_no_deadzone(pwm_roll);
channel_pitch->set_pwm_no_deadzone(pwm_pitch);
channel_throttle->set_pwm_no_deadzone(channel_throttle->read());
channel_rudder->set_pwm_no_deadzone(channel_rudder->read());
} else {
channel_roll->set_pwm(pwm_roll);
channel_pitch->set_pwm(pwm_pitch);
}
control_failsafe(channel_throttle->radio_in);
channel_throttle->servo_out = channel_throttle->control_in;
if (g.throttle_nudge && channel_throttle->servo_out > 50 && geofence_stickmixing()) {
float nudge = (channel_throttle->servo_out - 50) * 0.02f;
if (ahrs.airspeed_sensor_enabled()) {
airspeed_nudge_cm = (aparm.airspeed_max * 100 - g.airspeed_cruise_cm) * nudge;
} else {
throttle_nudge = (aparm.throttle_max - aparm.throttle_cruise) * nudge;
}
} else {
airspeed_nudge_cm = 0;
throttle_nudge = 0;
}
rudder_arm_disarm_check();
if (g.rudder_only != 0) {
// in rudder only mode we discard rudder input and get target
// attitude from the roll channel.
rudder_input = 0;
} else {
rudder_input = channel_rudder->control_in;
}
tuning.check_input();
}
void Plane::control_failsafe(uint16_t pwm)
{
if (millis() - failsafe.last_valid_rc_ms > 1000 || rc_failsafe_active()) {
// we do not have valid RC input. Set all primary channel
// control inputs to the trim value and throttle to min
channel_roll->radio_in = channel_roll->radio_trim;
channel_pitch->radio_in = channel_pitch->radio_trim;
channel_rudder->radio_in = channel_rudder->radio_trim;
// note that we don't set channel_throttle->radio_in to radio_trim,
// as that would cause throttle failsafe to not activate
channel_roll->control_in = 0;
channel_pitch->control_in = 0;
channel_rudder->control_in = 0;
channel_throttle->control_in = 0;
}
if(g.throttle_fs_enabled == 0)
return;
if (g.throttle_fs_enabled) {
if (rc_failsafe_active()) {
// we detect a failsafe from radio
// throttle has dropped below the mark
failsafe.ch3_counter++;
if (failsafe.ch3_counter == 10) {
gcs_send_text_fmt(MAV_SEVERITY_WARNING, "MSG FS ON %u", (unsigned)pwm);
failsafe.ch3_failsafe = true;
AP_Notify::flags.failsafe_radio = true;
}
if (failsafe.ch3_counter > 10) {
failsafe.ch3_counter = 10;
}
}else if(failsafe.ch3_counter > 0) {
// we are no longer in failsafe condition
// but we need to recover quickly
failsafe.ch3_counter--;
if (failsafe.ch3_counter > 3) {
failsafe.ch3_counter = 3;
}
if (failsafe.ch3_counter == 1) {
gcs_send_text_fmt(MAV_SEVERITY_WARNING, "MSG FS OFF %u", (unsigned)pwm);
} else if(failsafe.ch3_counter == 0) {
failsafe.ch3_failsafe = false;
AP_Notify::flags.failsafe_radio = false;
}
}
}
}
void Plane::trim_control_surfaces()
{
read_radio();
int16_t trim_roll_range = (channel_roll->radio_max - channel_roll->radio_min)/5;
int16_t trim_pitch_range = (channel_pitch->radio_max - channel_pitch->radio_min)/5;
if (channel_roll->radio_in < channel_roll->radio_min+trim_roll_range ||
channel_roll->radio_in > channel_roll->radio_max-trim_roll_range ||
channel_pitch->radio_in < channel_pitch->radio_min+trim_pitch_range ||
channel_pitch->radio_in > channel_pitch->radio_max-trim_pitch_range) {
// don't trim for extreme values - if we attempt to trim so
// there is less than 20 percent range left then assume the
// sticks are not properly centered. This also prevents
// problems with starting APM with the TX off
return;
}
// Store control surface trim values
// ---------------------------------
if(g.mix_mode == 0) {
if (channel_roll->radio_in != 0) {
channel_roll->radio_trim = channel_roll->radio_in;
}
if (channel_pitch->radio_in != 0) {
channel_pitch->radio_trim = channel_pitch->radio_in;
}
// the secondary aileron/elevator is trimmed only if it has a
// corresponding transmitter input channel, which k_aileron
// doesn't have
RC_Channel_aux::set_radio_trim(RC_Channel_aux::k_aileron_with_input);
RC_Channel_aux::set_radio_trim(RC_Channel_aux::k_elevator_with_input);
} else{
if (elevon.ch1_temp != 0) {
elevon.trim1 = elevon.ch1_temp;
}
if (elevon.ch2_temp != 0) {
elevon.trim2 = elevon.ch2_temp;
}
//Recompute values here using new values for elevon1_trim and elevon2_trim
//We cannot use radio_in[CH_ROLL] and radio_in[CH_PITCH] values from read_radio() because the elevon trim values have changed
uint16_t center = 1500;
channel_roll->radio_trim = center;
channel_pitch->radio_trim = center;
}
if (channel_rudder->radio_in != 0) {
channel_rudder->radio_trim = channel_rudder->radio_in;
}
// save to eeprom
channel_roll->save_eeprom();
channel_pitch->save_eeprom();
channel_rudder->save_eeprom();
}
void Plane::trim_radio()
{
for (uint8_t y = 0; y < 30; y++) {
read_radio();
}
trim_control_surfaces();
}
/*
return true if throttle level is below throttle failsafe threshold
or RC input is invalid
*/
bool Plane::rc_failsafe_active(void)
{
if (!g.throttle_fs_enabled) {
return false;
}
if (millis() - failsafe.last_valid_rc_ms > 1000) {
// we haven't had a valid RC frame for 1 seconds
return true;
}
if (channel_throttle->get_reverse()) {
return channel_throttle->radio_in >= g.throttle_fs_value;
}
return channel_throttle->radio_in <= g.throttle_fs_value;
}