ardupilot/libraries/AP_HAL_PX4/Scheduler.h

118 lines
3.7 KiB
C++

#pragma once
#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
#include "AP_HAL_PX4_Namespace.h"
#include <sys/time.h>
#include <signal.h>
#include <pthread.h>
#include <systemlib/perf_counter.h>
#define PX4_SCHEDULER_MAX_TIMER_PROCS 8
#define APM_MAX_PRIORITY 243
#define APM_MAIN_PRIORITY_BOOST 241
#define APM_MAIN_PRIORITY 180
#define APM_TIMER_PRIORITY 181
#define APM_SPI_PRIORITY 242
#define APM_CAN_PRIORITY 179
#define APM_I2C_PRIORITY 178
#define APM_UART_PRIORITY 60
#define APM_STORAGE_PRIORITY 59
#define APM_IO_PRIORITY 58
#define APM_SHELL_PRIORITY 57
#define APM_OVERTIME_PRIORITY 10
#define APM_STARTUP_PRIORITY 10
/* how long to boost priority of the main thread for each main
loop. This needs to be long enough for all interrupt-level drivers
(mostly SPI drivers) to run, and for the main loop of the vehicle
code to start the AHRS update.
Priority boosting of the main thread in delay_microseconds_boost()
avoids the problem that drivers in hpwork all happen to run right
at the start of the period where the main vehicle loop is calling
wait_for_sample(). That causes main loop timing jitter, which
reduces performance. Using the priority boost the main loop
temporarily runs at a priority higher than hpwork and the timer
thread, which results in much more consistent loop timing.
*/
#define APM_MAIN_PRIORITY_BOOST_USEC 150
#define APM_MAIN_THREAD_STACK_SIZE 8192
/* Scheduler implementation: */
class PX4::PX4Scheduler : public AP_HAL::Scheduler {
public:
PX4Scheduler();
/* AP_HAL::Scheduler methods */
void init();
void delay(uint16_t ms);
void delay_microseconds(uint16_t us);
void delay_microseconds_boost(uint16_t us);
void register_timer_process(AP_HAL::MemberProc);
void register_io_process(AP_HAL::MemberProc);
void register_timer_failsafe(AP_HAL::Proc, uint32_t period_us);
void reboot(bool hold_in_bootloader);
bool in_main_thread() const override;
void system_initialized();
void hal_initialized() { _hal_initialized = true; }
/*
disable interrupts and return a context that can be used to
restore the interrupt state. This can be used to protect
critical regions
*/
void *disable_interrupts_save(void) override;
/*
restore interrupt state from disable_interrupts_save()
*/
void restore_interrupts(void *) override;
/*
create a new thread
*/
bool thread_create(AP_HAL::MemberProc, const char *name, uint32_t stack_size, priority_base base, int8_t priority) override;
private:
bool _initialized;
volatile bool _hal_initialized;
AP_HAL::Proc _delay_cb;
uint16_t _min_delay_cb_ms;
AP_HAL::Proc _failsafe;
AP_HAL::MemberProc _timer_proc[PX4_SCHEDULER_MAX_TIMER_PROCS];
uint8_t _num_timer_procs;
volatile bool _in_timer_proc;
AP_HAL::MemberProc _io_proc[PX4_SCHEDULER_MAX_TIMER_PROCS];
uint8_t _num_io_procs;
volatile bool _in_io_proc;
pid_t _main_task_pid;
pthread_t _timer_thread_ctx;
pthread_t _io_thread_ctx;
pthread_t _storage_thread_ctx;
pthread_t _uart_thread_ctx;
static void *_timer_thread(void *arg);
static void *_io_thread(void *arg);
static void *_storage_thread(void *arg);
static void *_uart_thread(void *arg);
void _run_timers();
void _run_io(void);
void delay_microseconds_semaphore(uint16_t us);
perf_counter_t _perf_timers;
perf_counter_t _perf_io_timers;
perf_counter_t _perf_storage_timer;
perf_counter_t _perf_delay;
static void *thread_create_trampoline(void *ctx);
};
#endif