ardupilot/ArduCopter/motors.pde
Randy Mackay 7a2f49f7da Copter: arming check for gps if GPS FS set to LAND_EVEN_STABILIZE
Setting the GPS Failsafe to LAND_EVEN_STABILIZE means the copter will
LAND if it loses GPS even if it's in a manual flight mode like
Stabilize.  With this setting it makes sense to check the GPS quality
before arming even if we're in stabilize mode.
2013-11-18 23:59:26 +09:00

526 lines
16 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#define ARM_DELAY 20 // called at 10hz so 2 seconds
#define DISARM_DELAY 20 // called at 10hz so 2 seconds
#define AUTO_TRIM_DELAY 100 // called at 10hz so 10 seconds
#define AUTO_DISARMING_DELAY 15 // called at 1hz so 15 seconds
// arm_motors_check - checks for pilot input to arm or disarm the copter
// called at 10hz
static void arm_motors_check()
{
static int16_t arming_counter;
bool allow_arming = false;
// ensure throttle is down
if (g.rc_3.control_in > 0) {
arming_counter = 0;
return;
}
// allow arming/disarming in fully manual flight modes ACRO, STABILIZE, SPORT and DRIFT
if (manual_flight_mode(control_mode)) {
allow_arming = true;
}
// allow arming/disarming in Loiter and AltHold if landed
if (ap.land_complete && (control_mode == LOITER || control_mode == ALT_HOLD)) {
allow_arming = true;
}
// kick out other flight modes
if (!allow_arming) {
arming_counter = 0;
return;
}
#if FRAME_CONFIG == HELI_FRAME
// heli specific arming check
if (!motors.allow_arming()){
arming_counter = 0;
return;
}
#endif // HELI_FRAME
int16_t tmp = g.rc_4.control_in;
// full right
if (tmp > 4000) {
// increase the arming counter to a maximum of 1 beyond the auto trim counter
if( arming_counter <= AUTO_TRIM_DELAY ) {
arming_counter++;
}
// arm the motors and configure for flight
if (arming_counter == ARM_DELAY && !motors.armed()) {
// run pre-arm-checks and display failures
pre_arm_checks(true);
if(ap.pre_arm_check && arm_checks(true)) {
init_arm_motors();
}else{
// reset arming counter if pre-arm checks fail
arming_counter = 0;
}
}
// arm the motors and configure for flight
if (arming_counter == AUTO_TRIM_DELAY && motors.armed() && control_mode == STABILIZE) {
auto_trim_counter = 250;
}
// full left
}else if (tmp < -4000) {
// increase the counter to a maximum of 1 beyond the disarm delay
if( arming_counter <= DISARM_DELAY ) {
arming_counter++;
}
// disarm the motors
if (arming_counter == DISARM_DELAY && motors.armed()) {
init_disarm_motors();
}
// Yaw is centered so reset arming counter
}else{
arming_counter = 0;
}
}
// auto_disarm_check - disarms the copter if it has been sitting on the ground in manual mode with throttle low for at least 15 seconds
// called at 1hz
static void auto_disarm_check()
{
static uint8_t auto_disarming_counter;
// exit immediately if we are already disarmed or throttle is not zero
if (!motors.armed() || g.rc_3.control_in > 0) {
auto_disarming_counter = 0;
return;
}
// allow auto disarm in manual flight modes or Loiter/AltHold if we're landed
if(manual_flight_mode(control_mode) || (ap.land_complete && (control_mode == LOITER || control_mode == ALT_HOLD))) {
auto_disarming_counter++;
if(auto_disarming_counter >= AUTO_DISARMING_DELAY) {
init_disarm_motors();
auto_disarming_counter = 0;
}
}else{
auto_disarming_counter = 0;
}
}
// init_arm_motors - performs arming process including initialisation of barometer and gyros
static void init_arm_motors()
{
// arming marker
// Flag used to track if we have armed the motors the first time.
// This is used to decide if we should run the ground_start routine
// which calibrates the IMU
static bool did_ground_start = false;
// disable cpu failsafe because initialising everything takes a while
failsafe_disable();
#if LOGGING_ENABLED == ENABLED
// start dataflash
start_logging();
#endif
#if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
gcs_send_text_P(SEVERITY_HIGH, PSTR("ARMING MOTORS"));
#endif
// we don't want writes to the serial port to cause us to pause
// mid-flight, so set the serial ports non-blocking once we arm
// the motors
hal.uartA->set_blocking_writes(false);
if (gcs3.initialised) {
hal.uartC->set_blocking_writes(false);
}
#if COPTER_LEDS == ENABLED
piezo_beep_twice();
#endif
// Remember Orientation
// --------------------
init_simple_bearing();
initial_armed_bearing = ahrs.yaw_sensor;
// Reset home position
// -------------------
if (ap.home_is_set) {
init_home();
calc_distance_and_bearing();
}
// all I terms are invalid
// -----------------------
reset_I_all();
if(did_ground_start == false) {
did_ground_start = true;
startup_ground(true);
}
#if HIL_MODE != HIL_MODE_ATTITUDE
// read Baro pressure at ground -
// this resets Baro for more accuracy
//-----------------------------------
init_barometer();
#endif
// go back to normal AHRS gains
ahrs.set_fast_gains(false);
// enable gps velocity based centrefugal force compensation
ahrs.set_correct_centrifugal(true);
// set hover throttle
motors.set_mid_throttle(g.throttle_mid);
#if COPTER_LEDS == ENABLED
piezo_beep_twice();
#endif
// Cancel arming if throttle is raised too high so that copter does not suddenly take off
read_radio();
if (g.rc_3.control_in > g.throttle_cruise && g.throttle_cruise > 100) {
motors.output_min();
failsafe_enable();
return;
}
#if SPRAYER == ENABLED
// turn off sprayer's test if on
sprayer.test_pump(false);
#endif
// enable output to motors
output_min();
// finally actually arm the motors
motors.armed(true);
// log arming to dataflash
Log_Write_Event(DATA_ARMED);
// reenable failsafe
failsafe_enable();
}
// perform pre-arm checks and set ap.pre_arm_check flag
static void pre_arm_checks(bool display_failure)
{
// exit immediately if we've already successfully performed the pre-arm check
if (ap.pre_arm_check) {
return;
}
// succeed if pre arm checks are disabled
if(g.arming_check_enabled == ARMING_CHECK_NONE) {
set_pre_arm_check(true);
set_pre_arm_rc_check(true);
return;
}
// pre-arm rc checks a prerequisite
pre_arm_rc_checks();
if(!ap.pre_arm_rc_check) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: RC not calibrated"));
}
return;
}
// check Baro
if ((g.arming_check_enabled == ARMING_CHECK_ALL) || (g.arming_check_enabled & ARMING_CHECK_BARO)) {
// barometer health check
if(!barometer.healthy) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Baro not healthy"));
}
return;
}
}
// check Compass
if ((g.arming_check_enabled == ARMING_CHECK_ALL) || (g.arming_check_enabled & ARMING_CHECK_COMPASS)) {
// check the compass is healthy
if(!compass.healthy) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Compass not healthy"));
}
return;
}
// check compass learning is on or offsets have been set
Vector3f offsets = compass.get_offsets();
if(!compass._learn && offsets.length() == 0) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Compass not calibrated"));
}
return;
}
// check for unreasonable compass offsets
if(offsets.length() > 500) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Compass offsets too high"));
}
return;
}
// check for unreasonable mag field length
float mag_field = pythagorous3(compass.mag_x, compass.mag_y, compass.mag_z);
if (mag_field > COMPASS_MAGFIELD_EXPECTED*1.65 || mag_field < COMPASS_MAGFIELD_EXPECTED*0.35) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check mag field"));
}
return;
}
}
// check GPS
if ((g.arming_check_enabled == ARMING_CHECK_ALL) || (g.arming_check_enabled & ARMING_CHECK_GPS)) {
// check gps is ok if required - note this same check is repeated again in arm_checks
if ((mode_requires_GPS(control_mode) || g.failsafe_gps_enabled == FS_GPS_LAND_EVEN_STABILIZE) && !pre_arm_gps_checks()) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Bad GPS Pos"));
}
return;
}
#if AC_FENCE == ENABLED
// check fence is initialised
if(!fence.pre_arm_check() || (((fence.get_enabled_fences() & AC_FENCE_TYPE_CIRCLE) != 0) && !pre_arm_gps_checks())) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Bad GPS Pos"));
}
return;
}
#endif
}
// check INS
if ((g.arming_check_enabled == ARMING_CHECK_ALL) || (g.arming_check_enabled & ARMING_CHECK_INS)) {
// check accelerometers have been calibrated
if(!ins.calibrated()) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: INS not calibrated"));
}
return;
}
// check accels and gyros are healthy
if(!ins.healthy()) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: INS not healthy"));
}
return;
}
}
#ifndef CONFIG_ARCH_BOARD_PX4FMU_V1
// check board voltage
if ((g.arming_check_enabled == ARMING_CHECK_ALL) || (g.arming_check_enabled & ARMING_CHECK_VOLTAGE)) {
if(board_voltage() < BOARD_VOLTAGE_MIN || board_voltage() > BOARD_VOLTAGE_MAX) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check Board Voltage"));
}
return;
}
}
#endif
// check various parameter values
if ((g.arming_check_enabled == ARMING_CHECK_ALL) || (g.arming_check_enabled & ARMING_CHECK_PARAMETERS)) {
// ensure ch7 and ch8 have different functions
if ((g.ch7_option != 0 || g.ch8_option != 0) && g.ch7_option == g.ch8_option) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Ch7&Ch8 Opt cannot be same"));
}
return;
}
// failsafe parameter checks
if (g.failsafe_throttle) {
// check throttle min is above throttle failsafe trigger and that the trigger is above ppm encoder's loss-of-signal value of 900
if (g.rc_3.radio_min <= g.failsafe_throttle_value+10 || g.failsafe_throttle_value < 910) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check FS_THR_VALUE"));
}
return;
}
}
// lean angle parameter check
if (g.angle_max < 1000 || g.angle_max > 8000) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check ANGLE_MAX"));
}
return;
}
// acro balance parameter check
if ((g.acro_balance_roll > g.pi_stabilize_roll.kP()) || (g.acro_balance_pitch > g.pi_stabilize_pitch.kP())) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: ACRO_BAL_ROLL/PITCH"));
}
return;
}
}
// if we've gotten this far then pre arm checks have completed
set_pre_arm_check(true);
}
// perform pre_arm_rc_checks checks and set ap.pre_arm_rc_check flag
static void pre_arm_rc_checks()
{
// exit immediately if we've already successfully performed the pre-arm rc check
if( ap.pre_arm_rc_check ) {
return;
}
// set rc-checks to success if RC checks are disabled
if ((g.arming_check_enabled != ARMING_CHECK_ALL) && !(g.arming_check_enabled & ARMING_CHECK_RC)) {
set_pre_arm_rc_check(true);
return;
}
// check if radio has been calibrated
if(!g.rc_3.radio_min.load() && !g.rc_3.radio_max.load()) {
return;
}
// check channels 1 & 2 have min <= 1300 and max >= 1700
if (g.rc_1.radio_min > 1300 || g.rc_1.radio_max < 1700 || g.rc_2.radio_min > 1300 || g.rc_2.radio_max < 1700) {
return;
}
// check channels 3 & 4 have min <= 1300 and max >= 1700
if (g.rc_3.radio_min > 1300 || g.rc_3.radio_max < 1700 || g.rc_4.radio_min > 1300 || g.rc_4.radio_max < 1700) {
return;
}
// if we've gotten this far rc is ok
set_pre_arm_rc_check(true);
}
// performs pre_arm gps related checks and returns true if passed
static bool pre_arm_gps_checks()
{
float speed_cms = inertial_nav.get_velocity().length(); // speed according to inertial nav in cm/s
// ensure GPS is ok and our speed is below 50cm/s
if (!GPS_ok() || g_gps->hdop > g.gps_hdop_good || gps_glitch.glitching() || speed_cms == 0 || speed_cms > PREARM_MAX_VELOCITY_CMS) {
return false;
}
// if we got here all must be ok
return true;
}
// arm_checks - perform final checks before arming
// always called just before arming. Return true if ok to arm
static bool arm_checks(bool display_failure)
{
// succeed if arming checks are disabled
if (g.arming_check_enabled == ARMING_CHECK_NONE) {
return true;
}
// check gps is ok if required - note this same check is also done in pre-arm checks
if ((g.arming_check_enabled == ARMING_CHECK_ALL) || (g.arming_check_enabled & ARMING_CHECK_GPS)) {
if ((mode_requires_GPS(control_mode) || g.failsafe_gps_enabled == FS_GPS_LAND_EVEN_STABILIZE) && !pre_arm_gps_checks()) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Bad GPS Pos"));
}
return false;
}
}
// check parameters
if ((g.arming_check_enabled == ARMING_CHECK_ALL) || (g.arming_check_enabled & ARMING_CHECK_PARAMETERS)) {
// check throttle is above failsafe throttle
if (g.failsafe_throttle != FS_THR_DISABLED && g.rc_3.radio_in < g.failsafe_throttle_value) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Thr below FS"));
}
return false;
}
}
// check if safety switch has been pushed
if (hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Safety Switch"));
}
return false;
}
// if we've gotten this far all is ok
return true;
}
// init_disarm_motors - disarm motors
static void init_disarm_motors()
{
// return immediately if we are already disarmed
if (!motors.armed()) {
return;
}
#if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
gcs_send_text_P(SEVERITY_HIGH, PSTR("DISARMING MOTORS"));
#endif
motors.armed(false);
compass.save_offsets();
g.throttle_cruise.save();
#if AUTOTUNE == ENABLED
// save auto tuned parameters
auto_tune_save_tuning_gains_and_reset();
#endif
// we are not in the air
set_takeoff_complete(false);
#if COPTER_LEDS == ENABLED
piezo_beep();
#endif
// setup fast AHRS gains to get right attitude
ahrs.set_fast_gains(true);
// log disarm to the dataflash
Log_Write_Event(DATA_DISARMED);
// disable gps velocity based centrefugal force compensation
ahrs.set_correct_centrifugal(false);
}
/*****************************************
* Set the flight control servos based on the current calculated values
*****************************************/
static void
set_servos_4()
{
#if FRAME_CONFIG == TRI_FRAME
// To-Do: implement improved stability patch for tri so that we do not need to limit throttle input to motors
g.rc_3.servo_out = min(g.rc_3.servo_out, 800);
#endif
motors.output();
}