ardupilot/ArduCopter/mode.cpp
2021-01-20 18:19:40 +11:00

832 lines
27 KiB
C++

#include "Copter.h"
/*
* High level calls to set and update flight modes logic for individual
* flight modes is in control_acro.cpp, control_stabilize.cpp, etc
*/
/*
constructor for Mode object
*/
Mode::Mode(void) :
g(copter.g),
g2(copter.g2),
wp_nav(copter.wp_nav),
loiter_nav(copter.loiter_nav),
pos_control(copter.pos_control),
inertial_nav(copter.inertial_nav),
ahrs(copter.ahrs),
attitude_control(copter.attitude_control),
motors(copter.motors),
channel_roll(copter.channel_roll),
channel_pitch(copter.channel_pitch),
channel_throttle(copter.channel_throttle),
channel_yaw(copter.channel_yaw),
G_Dt(copter.G_Dt)
{ };
// return the static controller object corresponding to supplied mode
Mode *Copter::mode_from_mode_num(const Mode::Number mode)
{
Mode *ret = nullptr;
switch (mode) {
#if MODE_ACRO_ENABLED == ENABLED
case Mode::Number::ACRO:
ret = &mode_acro;
break;
#endif
case Mode::Number::STABILIZE:
ret = &mode_stabilize;
break;
case Mode::Number::ALT_HOLD:
ret = &mode_althold;
break;
#if MODE_AUTO_ENABLED == ENABLED
case Mode::Number::AUTO:
ret = &mode_auto;
break;
#endif
#if MODE_CIRCLE_ENABLED == ENABLED
case Mode::Number::CIRCLE:
ret = &mode_circle;
break;
#endif
#if MODE_LOITER_ENABLED == ENABLED
case Mode::Number::LOITER:
ret = &mode_loiter;
break;
#endif
#if MODE_GUIDED_ENABLED == ENABLED
case Mode::Number::GUIDED:
ret = &mode_guided;
break;
#endif
case Mode::Number::LAND:
ret = &mode_land;
break;
#if MODE_RTL_ENABLED == ENABLED
case Mode::Number::RTL:
ret = &mode_rtl;
break;
#endif
#if MODE_DRIFT_ENABLED == ENABLED
case Mode::Number::DRIFT:
ret = &mode_drift;
break;
#endif
#if MODE_SPORT_ENABLED == ENABLED
case Mode::Number::SPORT:
ret = &mode_sport;
break;
#endif
#if MODE_FLIP_ENABLED == ENABLED
case Mode::Number::FLIP:
ret = &mode_flip;
break;
#endif
#if AUTOTUNE_ENABLED == ENABLED
case Mode::Number::AUTOTUNE:
ret = &mode_autotune;
break;
#endif
#if MODE_POSHOLD_ENABLED == ENABLED
case Mode::Number::POSHOLD:
ret = &mode_poshold;
break;
#endif
#if MODE_BRAKE_ENABLED == ENABLED
case Mode::Number::BRAKE:
ret = &mode_brake;
break;
#endif
#if MODE_THROW_ENABLED == ENABLED
case Mode::Number::THROW:
ret = &mode_throw;
break;
#endif
#if HAL_ADSB_ENABLED
case Mode::Number::AVOID_ADSB:
ret = &mode_avoid_adsb;
break;
#endif
#if MODE_GUIDED_NOGPS_ENABLED == ENABLED
case Mode::Number::GUIDED_NOGPS:
ret = &mode_guided_nogps;
break;
#endif
#if MODE_SMARTRTL_ENABLED == ENABLED
case Mode::Number::SMART_RTL:
ret = &mode_smartrtl;
break;
#endif
#if OPTFLOW == ENABLED
case Mode::Number::FLOWHOLD:
ret = (Mode *)g2.mode_flowhold_ptr;
break;
#endif
#if MODE_FOLLOW_ENABLED == ENABLED
case Mode::Number::FOLLOW:
ret = &mode_follow;
break;
#endif
#if MODE_ZIGZAG_ENABLED == ENABLED
case Mode::Number::ZIGZAG:
ret = &mode_zigzag;
break;
#endif
#if MODE_SYSTEMID_ENABLED == ENABLED
case Mode::Number::SYSTEMID:
ret = (Mode *)g2.mode_systemid_ptr;
break;
#endif
#if MODE_AUTOROTATE_ENABLED == ENABLED
case Mode::Number::AUTOROTATE:
ret = &mode_autorotate;
break;
#endif
default:
break;
}
return ret;
}
// set_mode - change flight mode and perform any necessary initialisation
// optional force parameter used to force the flight mode change (used only first time mode is set)
// returns true if mode was successfully set
// ACRO, STABILIZE, ALTHOLD, LAND, DRIFT and SPORT can always be set successfully but the return state of other flight modes should be checked and the caller should deal with failures appropriately
bool Copter::set_mode(Mode::Number mode, ModeReason reason)
{
// return immediately if we are already in the desired mode
if (mode == control_mode) {
control_mode_reason = reason;
return true;
}
Mode *new_flightmode = mode_from_mode_num((Mode::Number)mode);
if (new_flightmode == nullptr) {
gcs().send_text(MAV_SEVERITY_WARNING,"No such mode");
AP::logger().Write_Error(LogErrorSubsystem::FLIGHT_MODE, LogErrorCode(mode));
return false;
}
bool ignore_checks = !motors->armed(); // allow switching to any mode if disarmed. We rely on the arming check to perform
#if FRAME_CONFIG == HELI_FRAME
// do not allow helis to enter a non-manual throttle mode if the
// rotor runup is not complete
if (!ignore_checks && !new_flightmode->has_manual_throttle() &&
(motors->get_spool_state() == AP_Motors::SpoolState::SPOOLING_UP || motors->get_spool_state() == AP_Motors::SpoolState::SPOOLING_DOWN)) {
#if MODE_AUTOROTATE_ENABLED == ENABLED
//if the mode being exited is the autorotation mode allow mode change despite rotor not being at
//full speed. This will reduce altitude loss on bail-outs back to non-manual throttle modes
bool in_autorotation_check = (flightmode != &mode_autorotate || new_flightmode != &mode_autorotate);
#else
bool in_autorotation_check = false;
#endif
if (!in_autorotation_check) {
gcs().send_text(MAV_SEVERITY_WARNING,"Flight mode change failed %s", new_flightmode->name());
AP::logger().Write_Error(LogErrorSubsystem::FLIGHT_MODE, LogErrorCode(mode));
return false;
}
}
#endif
#if FRAME_CONFIG != HELI_FRAME
// ensure vehicle doesn't leap off the ground if a user switches
// into a manual throttle mode from a non-manual-throttle mode
// (e.g. user arms in guided, raises throttle to 1300 (not enough to
// trigger auto takeoff), then switches into manual):
bool user_throttle = new_flightmode->has_manual_throttle();
#if MODE_DRIFT_ENABLED == ENABLED
if (new_flightmode == &mode_drift) {
user_throttle = true;
}
#endif
if (!ignore_checks &&
ap.land_complete &&
user_throttle &&
!copter.flightmode->has_manual_throttle() &&
new_flightmode->get_pilot_desired_throttle() > copter.get_non_takeoff_throttle()) {
gcs().send_text(MAV_SEVERITY_WARNING, "Mode change failed: throttle too high");
AP::logger().Write_Error(LogErrorSubsystem::FLIGHT_MODE, LogErrorCode(mode));
return false;
}
#endif
if (!ignore_checks &&
new_flightmode->requires_GPS() &&
!copter.position_ok()) {
gcs().send_text(MAV_SEVERITY_WARNING, "Mode change failed: %s requires position", new_flightmode->name());
AP::logger().Write_Error(LogErrorSubsystem::FLIGHT_MODE, LogErrorCode(mode));
return false;
}
// check for valid altitude if old mode did not require it but new one does
// we only want to stop changing modes if it could make things worse
if (!ignore_checks &&
!copter.ekf_alt_ok() &&
flightmode->has_manual_throttle() &&
!new_flightmode->has_manual_throttle()) {
gcs().send_text(MAV_SEVERITY_WARNING, "Mode change failed: %s need alt estimate", new_flightmode->name());
AP::logger().Write_Error(LogErrorSubsystem::FLIGHT_MODE, LogErrorCode(mode));
return false;
}
if (!new_flightmode->init(ignore_checks)) {
gcs().send_text(MAV_SEVERITY_WARNING,"Flight mode change failed %s", new_flightmode->name());
AP::logger().Write_Error(LogErrorSubsystem::FLIGHT_MODE, LogErrorCode(mode));
return false;
}
// perform any cleanup required by previous flight mode
exit_mode(flightmode, new_flightmode);
// store previous flight mode (only used by tradeheli's autorotation)
prev_control_mode = control_mode;
// update flight mode
flightmode = new_flightmode;
control_mode = mode;
control_mode_reason = reason;
logger.Write_Mode((uint8_t)control_mode, reason);
gcs().send_message(MSG_HEARTBEAT);
#if HAL_ADSB_ENABLED
adsb.set_is_auto_mode((mode == Mode::Number::AUTO) || (mode == Mode::Number::RTL) || (mode == Mode::Number::GUIDED));
#endif
#if AC_FENCE == ENABLED
// pilot requested flight mode change during a fence breach indicates pilot is attempting to manually recover
// this flight mode change could be automatic (i.e. fence, battery, GPS or GCS failsafe)
// but it should be harmless to disable the fence temporarily in these situations as well
fence.manual_recovery_start();
#endif
#if CAMERA == ENABLED
camera.set_is_auto_mode(control_mode == Mode::Number::AUTO);
#endif
// update notify object
notify_flight_mode();
// return success
return true;
}
bool Copter::set_mode(const uint8_t new_mode, const ModeReason reason)
{
static_assert(sizeof(Mode::Number) == sizeof(new_mode), "The new mode can't be mapped to the vehicles mode number");
#ifdef DISALLOW_GCS_MODE_CHANGE_DURING_RC_FAILSAFE
if (reason == ModeReason::GCS_COMMAND && copter.failsafe.radio) {
// don't allow mode changes while in radio failsafe
return false;
}
#endif
return copter.set_mode(static_cast<Mode::Number>(new_mode), reason);
}
// update_flight_mode - calls the appropriate attitude controllers based on flight mode
// called at 100hz or more
void Copter::update_flight_mode()
{
surface_tracking.invalidate_for_logging(); // invalidate surface tracking alt, flight mode will set to true if used
flightmode->run();
}
// exit_mode - high level call to organise cleanup as a flight mode is exited
void Copter::exit_mode(Mode *&old_flightmode,
Mode *&new_flightmode)
{
#if AUTOTUNE_ENABLED == ENABLED
if (old_flightmode == &mode_autotune) {
mode_autotune.stop();
}
#endif
// stop mission when we leave auto mode
#if MODE_AUTO_ENABLED == ENABLED
if (old_flightmode == &mode_auto) {
if (mode_auto.mission.state() == AP_Mission::MISSION_RUNNING) {
mode_auto.mission.stop();
}
#if HAL_MOUNT_ENABLED
camera_mount.set_mode_to_default();
#endif // HAL_MOUNT_ENABLED
}
#endif
// smooth throttle transition when switching from manual to automatic flight modes
if (old_flightmode->has_manual_throttle() && !new_flightmode->has_manual_throttle() && motors->armed() && !ap.land_complete) {
// this assumes all manual flight modes use get_pilot_desired_throttle to translate pilot input to output throttle
set_accel_throttle_I_from_pilot_throttle();
}
// cancel any takeoffs in progress
old_flightmode->takeoff_stop();
#if MODE_SMARTRTL_ENABLED == ENABLED
// call smart_rtl cleanup
if (old_flightmode == &mode_smartrtl) {
mode_smartrtl.exit();
}
#endif
#if MODE_FOLLOW_ENABLED == ENABLED
if (old_flightmode == &mode_follow) {
mode_follow.exit();
}
#endif
#if MODE_ZIGZAG_ENABLED == ENABLED
if (old_flightmode == &mode_zigzag) {
mode_zigzag.exit();
}
#endif
#if MODE_ACRO_ENABLED == ENABLED
if (old_flightmode == &mode_acro) {
mode_acro.exit();
}
#endif
#if FRAME_CONFIG == HELI_FRAME
// firmly reset the flybar passthrough to false when exiting acro mode.
if (old_flightmode == &mode_acro) {
attitude_control->use_flybar_passthrough(false, false);
motors->set_acro_tail(false);
}
// if we are changing from a mode that did not use manual throttle,
// stab col ramp value should be pre-loaded to the correct value to avoid a twitch
// heli_stab_col_ramp should really only be active switching between Stabilize and Acro modes
if (!old_flightmode->has_manual_throttle()){
if (new_flightmode == &mode_stabilize){
input_manager.set_stab_col_ramp(1.0);
} else if (new_flightmode == &mode_acro){
input_manager.set_stab_col_ramp(0.0);
}
}
#endif //HELI_FRAME
}
// notify_flight_mode - sets notify object based on current flight mode. Only used for OreoLED notify device
void Copter::notify_flight_mode() {
AP_Notify::flags.autopilot_mode = flightmode->is_autopilot();
AP_Notify::flags.flight_mode = (uint8_t)control_mode;
notify.set_flight_mode_str(flightmode->name4());
}
void Mode::update_navigation()
{
// run autopilot to make high level decisions about control modes
run_autopilot();
}
// get_pilot_desired_angle - transform pilot's roll or pitch input into a desired lean angle
// returns desired angle in centi-degrees
void Mode::get_pilot_desired_lean_angles(float &roll_out, float &pitch_out, float angle_max, float angle_limit) const
{
// throttle failsafe check
if (copter.failsafe.radio || !copter.ap.rc_receiver_present) {
roll_out = 0;
pitch_out = 0;
return;
}
// fetch roll and pitch inputs
roll_out = channel_roll->get_control_in();
pitch_out = channel_pitch->get_control_in();
// limit max lean angle
angle_limit = constrain_float(angle_limit, 1000.0f, angle_max);
// scale roll and pitch inputs to ANGLE_MAX parameter range
float scaler = angle_max/(float)ROLL_PITCH_YAW_INPUT_MAX;
roll_out *= scaler;
pitch_out *= scaler;
// do circular limit
float total_in = norm(pitch_out, roll_out);
if (total_in > angle_limit) {
float ratio = angle_limit / total_in;
roll_out *= ratio;
pitch_out *= ratio;
}
// do lateral tilt to euler roll conversion
roll_out = (18000/M_PI) * atanf(cosf(pitch_out*(M_PI/18000))*tanf(roll_out*(M_PI/18000)));
// roll_out and pitch_out are returned
}
bool Mode::_TakeOff::triggered(const float target_climb_rate) const
{
if (!copter.ap.land_complete) {
// can't take off if we're already flying
return false;
}
if (target_climb_rate <= 0.0f) {
// can't takeoff unless we want to go up...
return false;
}
if (copter.motors->get_spool_state() != AP_Motors::SpoolState::THROTTLE_UNLIMITED) {
// hold aircraft on the ground until rotor speed runup has finished
return false;
}
return true;
}
bool Mode::is_disarmed_or_landed() const
{
if (!motors->armed() || !copter.ap.auto_armed || copter.ap.land_complete) {
return true;
}
return false;
}
void Mode::zero_throttle_and_relax_ac(bool spool_up)
{
if (spool_up) {
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
} else {
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE);
}
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0.0f, 0.0f, 0.0f);
attitude_control->set_throttle_out(0.0f, false, copter.g.throttle_filt);
}
void Mode::zero_throttle_and_hold_attitude()
{
// run attitude controller
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, 0.0f);
attitude_control->set_throttle_out(0.0f, false, copter.g.throttle_filt);
}
void Mode::make_safe_spool_down()
{
// command aircraft to initiate the shutdown process
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE);
switch (motors->get_spool_state()) {
case AP_Motors::SpoolState::SHUT_DOWN:
case AP_Motors::SpoolState::GROUND_IDLE:
// relax controllers during idle states
attitude_control->reset_rate_controller_I_terms_smoothly();
attitude_control->set_yaw_target_to_current_heading();
break;
case AP_Motors::SpoolState::SPOOLING_UP:
case AP_Motors::SpoolState::THROTTLE_UNLIMITED:
case AP_Motors::SpoolState::SPOOLING_DOWN:
// while transitioning though active states continue to operate normally
break;
}
pos_control->relax_alt_hold_controllers(0.0f); // forces throttle output to go to zero
pos_control->update_z_controller();
// we may need to move this out
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0.0f, 0.0f, 0.0f);
}
/*
get a height above ground estimate for landing
*/
int32_t Mode::get_alt_above_ground_cm(void)
{
int32_t alt_above_ground_cm;
if (copter.get_rangefinder_height_interpolated_cm(alt_above_ground_cm)) {
return alt_above_ground_cm;
}
if (!pos_control->is_active_xy()) {
return copter.current_loc.alt;
}
if (copter.current_loc.get_alt_cm(Location::AltFrame::ABOVE_TERRAIN, alt_above_ground_cm)) {
return alt_above_ground_cm;
}
// Assume the Earth is flat:
return copter.current_loc.alt;
}
void Mode::land_run_vertical_control(bool pause_descent)
{
float cmb_rate = 0;
if (!pause_descent) {
float max_land_descent_velocity;
if (g.land_speed_high > 0) {
max_land_descent_velocity = -g.land_speed_high;
} else {
max_land_descent_velocity = pos_control->get_max_speed_down();
}
// Don't speed up for landing.
max_land_descent_velocity = MIN(max_land_descent_velocity, -abs(g.land_speed));
// Compute a vertical velocity demand such that the vehicle approaches g2.land_alt_low. Without the below constraint, this would cause the vehicle to hover at g2.land_alt_low.
cmb_rate = sqrt_controller(MAX(g2.land_alt_low,100)-get_alt_above_ground_cm(), pos_control->get_pos_z_p().kP(), pos_control->get_max_accel_z(), G_Dt);
// Constrain the demanded vertical velocity so that it is between the configured maximum descent speed and the configured minimum descent speed.
cmb_rate = constrain_float(cmb_rate, max_land_descent_velocity, -abs(g.land_speed));
#if PRECISION_LANDING == ENABLED
const bool navigating = pos_control->is_active_xy();
bool doing_precision_landing = !copter.ap.land_repo_active && copter.precland.target_acquired() && navigating;
if (doing_precision_landing && copter.rangefinder_alt_ok() && copter.rangefinder_state.alt_cm > 35.0f && copter.rangefinder_state.alt_cm < 200.0f) {
// compute desired velocity
const float precland_acceptable_error = 15.0f;
const float precland_min_descent_speed = 10.0f;
float max_descent_speed = abs(g.land_speed)*0.5f;
float land_slowdown = MAX(0.0f, pos_control->get_horizontal_error()*(max_descent_speed/precland_acceptable_error));
cmb_rate = MIN(-precland_min_descent_speed, -max_descent_speed+land_slowdown);
}
#endif
}
// update altitude target and call position controller
pos_control->set_alt_target_from_climb_rate_ff(cmb_rate, G_Dt, true);
pos_control->update_z_controller();
}
void Mode::land_run_horizontal_control()
{
float target_roll = 0.0f;
float target_pitch = 0.0f;
float target_yaw_rate = 0;
// relax loiter target if we might be landed
if (copter.ap.land_complete_maybe) {
loiter_nav->soften_for_landing();
}
// process pilot inputs
if (!copter.failsafe.radio) {
if ((g.throttle_behavior & THR_BEHAVE_HIGH_THROTTLE_CANCELS_LAND) != 0 && copter.rc_throttle_control_in_filter.get() > LAND_CANCEL_TRIGGER_THR){
AP::logger().Write_Event(LogEvent::LAND_CANCELLED_BY_PILOT);
// exit land if throttle is high
if (!set_mode(Mode::Number::LOITER, ModeReason::THROTTLE_LAND_ESCAPE)) {
set_mode(Mode::Number::ALT_HOLD, ModeReason::THROTTLE_LAND_ESCAPE);
}
}
if (g.land_repositioning) {
// apply SIMPLE mode transform to pilot inputs
update_simple_mode();
// convert pilot input to lean angles
get_pilot_desired_lean_angles(target_roll, target_pitch, loiter_nav->get_angle_max_cd(), attitude_control->get_althold_lean_angle_max());
// record if pilot has overridden roll or pitch
if (!is_zero(target_roll) || !is_zero(target_pitch)) {
if (!copter.ap.land_repo_active) {
AP::logger().Write_Event(LogEvent::LAND_REPO_ACTIVE);
}
copter.ap.land_repo_active = true;
}
}
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
if (!is_zero(target_yaw_rate)) {
auto_yaw.set_mode(AUTO_YAW_HOLD);
}
}
#if PRECISION_LANDING == ENABLED
bool doing_precision_landing = !copter.ap.land_repo_active && copter.precland.target_acquired();
// run precision landing
if (doing_precision_landing) {
Vector2f target_pos, target_vel_rel;
if (!copter.precland.get_target_position_cm(target_pos)) {
target_pos.x = inertial_nav.get_position().x;
target_pos.y = inertial_nav.get_position().y;
}
if (!copter.precland.get_target_velocity_relative_cms(target_vel_rel)) {
target_vel_rel.x = -inertial_nav.get_velocity().x;
target_vel_rel.y = -inertial_nav.get_velocity().y;
}
pos_control->set_xy_target(target_pos.x, target_pos.y);
pos_control->override_vehicle_velocity_xy(-target_vel_rel);
}
#endif
// process roll, pitch inputs
loiter_nav->set_pilot_desired_acceleration(target_roll, target_pitch, G_Dt);
// run loiter controller
loiter_nav->update();
float nav_roll = loiter_nav->get_roll();
float nav_pitch = loiter_nav->get_pitch();
if (g2.wp_navalt_min > 0) {
// user has requested an altitude below which navigation
// attitude is limited. This is used to prevent commanded roll
// over on landing, which particularly affects helicopters if
// there is any position estimate drift after touchdown. We
// limit attitude to 7 degrees below this limit and linearly
// interpolate for 1m above that
float attitude_limit_cd = linear_interpolate(700, copter.aparm.angle_max, get_alt_above_ground_cm(),
g2.wp_navalt_min*100U, (g2.wp_navalt_min+1)*100U);
float total_angle_cd = norm(nav_roll, nav_pitch);
if (total_angle_cd > attitude_limit_cd) {
float ratio = attitude_limit_cd / total_angle_cd;
nav_roll *= ratio;
nav_pitch *= ratio;
// tell position controller we are applying an external limit
pos_control->set_limit_accel_xy();
}
}
// call attitude controller
if (auto_yaw.mode() == AUTO_YAW_HOLD) {
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(nav_roll, nav_pitch, target_yaw_rate);
} else {
// roll, pitch from waypoint controller, yaw heading from auto_heading()
attitude_control->input_euler_angle_roll_pitch_yaw(nav_roll, nav_pitch, auto_yaw.yaw(), true);
}
}
float Mode::throttle_hover() const
{
return motors->get_throttle_hover();
}
// transform pilot's manual throttle input to make hover throttle mid stick
// used only for manual throttle modes
// thr_mid should be in the range 0 to 1
// returns throttle output 0 to 1
float Mode::get_pilot_desired_throttle() const
{
const float thr_mid = throttle_hover();
int16_t throttle_control = channel_throttle->get_control_in();
int16_t mid_stick = copter.get_throttle_mid();
// protect against unlikely divide by zero
if (mid_stick <= 0) {
mid_stick = 500;
}
// ensure reasonable throttle values
throttle_control = constrain_int16(throttle_control,0,1000);
// calculate normalised throttle input
float throttle_in;
if (throttle_control < mid_stick) {
throttle_in = ((float)throttle_control)*0.5f/(float)mid_stick;
} else {
throttle_in = 0.5f + ((float)(throttle_control-mid_stick)) * 0.5f / (float)(1000-mid_stick);
}
const float expo = constrain_float(-(thr_mid-0.5f)/0.375f, -0.5f, 1.0f);
// calculate the output throttle using the given expo function
float throttle_out = throttle_in*(1.0f-expo) + expo*throttle_in*throttle_in*throttle_in;
return throttle_out;
}
float Mode::get_avoidance_adjusted_climbrate(float target_rate)
{
#if AC_AVOID_ENABLED == ENABLED
AP::ac_avoid()->adjust_velocity_z(pos_control->get_pos_z_p().kP(), pos_control->get_max_accel_z(), target_rate, G_Dt);
return target_rate;
#else
return target_rate;
#endif
}
Mode::AltHoldModeState Mode::get_alt_hold_state(float target_climb_rate_cms)
{
// Alt Hold State Machine Determination
if (!motors->armed()) {
// the aircraft should moved to a shut down state
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN);
// transition through states as aircraft spools down
switch (motors->get_spool_state()) {
case AP_Motors::SpoolState::SHUT_DOWN:
return AltHold_MotorStopped;
case AP_Motors::SpoolState::GROUND_IDLE:
return AltHold_Landed_Ground_Idle;
default:
return AltHold_Landed_Pre_Takeoff;
}
} else if (takeoff.running() || takeoff.triggered(target_climb_rate_cms)) {
// the aircraft is currently landed or taking off, asking for a positive climb rate and in THROTTLE_UNLIMITED
// the aircraft should progress through the take off procedure
return AltHold_Takeoff;
} else if (!copter.ap.auto_armed || copter.ap.land_complete) {
// the aircraft is armed and landed
if (target_climb_rate_cms < 0.0f && !copter.ap.using_interlock) {
// the aircraft should move to a ground idle state
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE);
} else {
// the aircraft should prepare for imminent take off
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
}
if (motors->get_spool_state() == AP_Motors::SpoolState::GROUND_IDLE) {
// the aircraft is waiting in ground idle
return AltHold_Landed_Ground_Idle;
} else {
// the aircraft can leave the ground at any time
return AltHold_Landed_Pre_Takeoff;
}
} else {
// the aircraft is in a flying state
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
return AltHold_Flying;
}
}
// pass-through functions to reduce code churn on conversion;
// these are candidates for moving into the Mode base
// class.
float Mode::get_pilot_desired_yaw_rate(int16_t stick_angle)
{
return copter.get_pilot_desired_yaw_rate(stick_angle);
}
float Mode::get_pilot_desired_climb_rate(float throttle_control)
{
return copter.get_pilot_desired_climb_rate(throttle_control);
}
float Mode::get_non_takeoff_throttle()
{
return copter.get_non_takeoff_throttle();
}
void Mode::update_simple_mode(void) {
copter.update_simple_mode();
}
bool Mode::set_mode(Mode::Number mode, ModeReason reason)
{
return copter.set_mode(mode, reason);
}
void Mode::set_land_complete(bool b)
{
return copter.set_land_complete(b);
}
GCS_Copter &Mode::gcs()
{
return copter.gcs();
}
// set_throttle_takeoff - allows modes to tell throttle controller we
// are taking off so I terms can be cleared
void Mode::set_throttle_takeoff()
{
// tell position controller to reset alt target and reset I terms
pos_control->init_takeoff();
}
uint16_t Mode::get_pilot_speed_dn()
{
return copter.get_pilot_speed_dn();
}