ardupilot/libraries/AP_InertialSensor/AP_InertialSensor_Backend.h

350 lines
13 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
IMU driver backend class. Each supported gyro/accel sensor type
needs to have an object derived from this class.
Note that drivers can implement just gyros or just accels, and can
also provide multiple gyro/accel instances.
*/
#pragma once
#include <inttypes.h>
#include <AP_Math/AP_Math.h>
#include <AP_ExternalAHRS/AP_ExternalAHRS.h>
#include "AP_InertialSensor.h"
class AuxiliaryBus;
class AP_Logger;
class AP_InertialSensor_Backend
{
public:
AP_InertialSensor_Backend(AP_InertialSensor &imu);
AP_InertialSensor_Backend(const AP_InertialSensor_Backend &that) = delete;
// we declare a virtual destructor so that drivers can
// override with a custom destructor if need be.
virtual ~AP_InertialSensor_Backend(void) {}
/*
* Update the sensor data. Called by the frontend to transfer
* accumulated sensor readings to the frontend structure via the
* _publish_gyro() and _publish_accel() functions
*/
virtual bool update() = 0;
/*
* optional function to accumulate more samples. This is needed for drivers that don't use a timer to gather samples
*/
virtual void accumulate() {}
/*
* Configure and start all sensors. The empty implementation allows
* subclasses to already start the sensors when it's detected
*/
virtual void start() { }
/*
* Return an AuxiliaryBus if backend has another bus it is able to export
*/
virtual AuxiliaryBus *get_auxiliary_bus() { return nullptr; }
/*
* Return the unique identifier for this backend: it's the same for
* several sensors if the backend registers more gyros/accels
*/
int16_t get_id() const { return _id; }
//Returns the Clip Limit
float get_clip_limit() const { return _clip_limit; }
// notify of a fifo reset
void notify_fifo_reset(void);
// get a startup banner to output to the GCS
virtual bool get_output_banner(char* banner, uint8_t banner_len) { return false; }
#if HAL_EXTERNAL_AHRS_ENABLED
virtual void handle_external(const AP_ExternalAHRS::ins_data_message_t &pkt) {}
#endif
/*
device driver IDs. These are used to fill in the devtype field
of the device ID, which shows up as INS*ID* parameters to
users. The values are chosen for compatibility with existing PX4
drivers.
If a change is made to a driver that would make existing
calibration values invalid then this number must be changed.
*/
enum DevTypes {
DEVTYPE_BMI160 = 0x09,
DEVTYPE_L3G4200D = 0x10,
DEVTYPE_ACC_LSM303D = 0x11,
DEVTYPE_ACC_BMA180 = 0x12,
DEVTYPE_ACC_MPU6000 = 0x13,
DEVTYPE_ACC_MPU9250 = 0x16,
DEVTYPE_ACC_IIS328DQ = 0x17,
DEVTYPE_ACC_LSM9DS1 = 0x18,
DEVTYPE_GYR_MPU6000 = 0x21,
DEVTYPE_GYR_L3GD20 = 0x22,
DEVTYPE_GYR_MPU9250 = 0x24,
DEVTYPE_GYR_I3G4250D = 0x25,
DEVTYPE_GYR_LSM9DS1 = 0x26,
DEVTYPE_INS_ICM20789 = 0x27,
DEVTYPE_INS_ICM20689 = 0x28,
DEVTYPE_INS_BMI055 = 0x29,
DEVTYPE_SITL = 0x2A,
DEVTYPE_INS_BMI088 = 0x2B,
DEVTYPE_INS_ICM20948 = 0x2C,
DEVTYPE_INS_ICM20648 = 0x2D,
DEVTYPE_INS_ICM20649 = 0x2E,
DEVTYPE_INS_ICM20602 = 0x2F,
DEVTYPE_INS_ICM20601 = 0x30,
DEVTYPE_INS_ADIS1647X = 0x31,
DEVTYPE_SERIAL = 0x32,
DEVTYPE_INS_ICM40609 = 0x33,
DEVTYPE_INS_ICM42688 = 0x34,
DEVTYPE_INS_ICM42605 = 0x35,
};
protected:
// access to frontend
AP_InertialSensor &_imu;
// semaphore for access to shared frontend data
HAL_Semaphore _sem;
//Default Clip Limit
float _clip_limit = 15.5f * GRAVITY_MSS;
void _rotate_and_correct_accel(uint8_t instance, Vector3f &accel);
void _rotate_and_correct_gyro(uint8_t instance, Vector3f &gyro);
// rotate gyro vector, offset and publish
void _publish_gyro(uint8_t instance, const Vector3f &gyro);
// this should be called every time a new gyro raw sample is
// available - be it published or not the sample is raw in the
// sense that it's not filtered yet, but it must be rotated and
// corrected (_rotate_and_correct_gyro)
// The sample_us value must be provided for non-FIFO based
// sensors, and should be set to zero for FIFO based sensors
void _notify_new_gyro_raw_sample(uint8_t instance, const Vector3f &accel, uint64_t sample_us=0);
// rotate accel vector, scale, offset and publish
void _publish_accel(uint8_t instance, const Vector3f &accel);
// this should be called every time a new accel raw sample is available -
// be it published or not
// the sample is raw in the sense that it's not filtered yet, but it must
// be rotated and corrected (_rotate_and_correct_accel)
// The sample_us value must be provided for non-FIFO based
// sensors, and should be set to zero for FIFO based sensors
void _notify_new_accel_raw_sample(uint8_t instance, const Vector3f &accel, uint64_t sample_us=0, bool fsync_set=false);
// set the amount of oversamping a accel is doing
void _set_accel_oversampling(uint8_t instance, uint8_t n);
// set the amount of oversamping a gyro is doing
void _set_gyro_oversampling(uint8_t instance, uint8_t n);
// indicate the backend is doing sensor-rate sampling for this accel
void _set_accel_sensor_rate_sampling_enabled(uint8_t instance, bool value) {
const uint8_t bit = (1<<instance);
if (value) {
_imu._accel_sensor_rate_sampling_enabled |= bit;
} else {
_imu._accel_sensor_rate_sampling_enabled &= ~bit;
}
}
void _set_gyro_sensor_rate_sampling_enabled(uint8_t instance, bool value) {
const uint8_t bit = (1<<instance);
if (value) {
_imu._gyro_sensor_rate_sampling_enabled |= bit;
} else {
_imu._gyro_sensor_rate_sampling_enabled &= ~bit;
}
}
void _set_raw_sample_accel_multiplier(uint8_t instance, uint16_t mul) {
_imu._accel_raw_sampling_multiplier[instance] = mul;
}
void _set_raw_sample_gyro_multiplier(uint8_t instance, uint16_t mul) {
_imu._gyro_raw_sampling_multiplier[instance] = mul;
}
// update the sensor rate for FIFO sensors
void _update_sensor_rate(uint16_t &count, uint32_t &start_us, float &rate_hz) const;
// return true if the sensors are still converging and sampling rates could change significantly
bool sensors_converging() const { return AP_HAL::millis() < 30000; }
// set accelerometer max absolute offset for calibration
void _set_accel_max_abs_offset(uint8_t instance, float offset);
// get accelerometer raw sample rate.
float _accel_raw_sample_rate(uint8_t instance) const {
return _imu._accel_raw_sample_rates[instance];
}
// set accelerometer raw sample rate; note that the storage type
// is actually float!
void _set_accel_raw_sample_rate(uint8_t instance, uint16_t rate_hz) {
_imu._accel_raw_sample_rates[instance] = rate_hz;
}
// get gyroscope raw sample rate
float _gyro_raw_sample_rate(uint8_t instance) const {
return _imu._gyro_raw_sample_rates[instance];
}
// set gyro raw sample rate; note that the storage type is
// actually float!
void _set_gyro_raw_sample_rate(uint8_t instance, uint16_t rate_hz) {
_imu._gyro_raw_sample_rates[instance] = rate_hz;
}
// publish a temperature value
void _publish_temperature(uint8_t instance, float temperature);
// set accelerometer error_count
void _set_accel_error_count(uint8_t instance, uint32_t error_count);
// set gyro error_count
void _set_gyro_error_count(uint8_t instance, uint32_t error_count);
// increment accelerometer error_count
void _inc_accel_error_count(uint8_t instance);
// increment gyro error_count
void _inc_gyro_error_count(uint8_t instance);
// backend unique identifier or -1 if backend doesn't identify itself
int16_t _id = -1;
// return the default filter frequency in Hz for the sample rate
uint16_t _accel_filter_cutoff(void) const { return _imu._accel_filter_cutoff; }
// return the default filter frequency in Hz for the sample rate
uint16_t _gyro_filter_cutoff(void) const { return _imu._gyro_filter_cutoff; }
// return the requested sample rate in Hz
uint16_t get_loop_rate_hz(void) const;
// return the notch filter center in Hz for the sample rate
float _gyro_notch_center_freq_hz(void) const { return _imu._notch_filter.center_freq_hz(); }
// return the notch filter bandwidth in Hz for the sample rate
float _gyro_notch_bandwidth_hz(void) const { return _imu._notch_filter.bandwidth_hz(); }
// return the notch filter attenuation in dB for the sample rate
float _gyro_notch_attenuation_dB(void) const { return _imu._notch_filter.attenuation_dB(); }
bool _gyro_notch_enabled(void) const { return _imu._notch_filter.enabled(); }
// return the harmonic notch filter center in Hz for the sample rate
float gyro_harmonic_notch_center_freq_hz() const { return _imu.get_gyro_dynamic_notch_center_freq_hz(); }
// set of harmonic notch current center frequencies
const float* gyro_harmonic_notch_center_frequencies_hz(void) const { return _imu.get_gyro_dynamic_notch_center_frequencies_hz(); }
// number of harmonic notch current center frequencies
uint8_t num_gyro_harmonic_notch_center_frequencies(void) const { return _imu.get_num_gyro_dynamic_notch_center_frequencies(); }
// return the harmonic notch filter bandwidth in Hz for the sample rate
float gyro_harmonic_notch_bandwidth_hz(void) const { return _imu._harmonic_notch_filter.bandwidth_hz(); }
// return the harmonic notch filter attenuation in dB for the sample rate
float gyro_harmonic_notch_attenuation_dB(void) const { return _imu._harmonic_notch_filter.attenuation_dB(); }
bool gyro_harmonic_notch_enabled(void) const { return _imu._harmonic_notch_filter.enabled(); }
// common gyro update function for all backends
void update_gyro(uint8_t instance);
// common accel update function for all backends
void update_accel(uint8_t instance);
// support for updating filter at runtime
uint16_t _last_accel_filter_hz;
uint16_t _last_gyro_filter_hz;
float _last_notch_center_freq_hz;
float _last_notch_bandwidth_hz;
float _last_notch_attenuation_dB;
// support for updating harmonic filter at runtime
float _last_harmonic_notch_center_freq_hz;
float _last_harmonic_notch_bandwidth_hz;
float _last_harmonic_notch_attenuation_dB;
void set_gyro_orientation(uint8_t instance, enum Rotation rotation) {
_imu._gyro_orientation[instance] = rotation;
}
void set_accel_orientation(uint8_t instance, enum Rotation rotation) {
_imu._accel_orientation[instance] = rotation;
}
// increment clipping counted. Used by drivers that do decimation before supplying
// samples to the frontend
void increment_clip_count(uint8_t instance) {
_imu._accel_clip_count[instance]++;
}
// should fast sampling be enabled on this IMU?
bool enable_fast_sampling(uint8_t instance) {
return (_imu._fast_sampling_mask & (1U<<instance)) != 0;
}
// if fast sampling is enabled, the rate to use in kHz
uint8_t get_fast_sampling_rate() {
return (1 << uint8_t(_imu._fast_sampling_rate));
}
// called by subclass when data is received from the sensor, thus
// at the 'sensor rate'
void _notify_new_accel_sensor_rate_sample(uint8_t instance, const Vector3f &accel);
void _notify_new_gyro_sensor_rate_sample(uint8_t instance, const Vector3f &gyro);
/*
notify of a FIFO reset so we don't use bad data to update observed sensor rate
*/
void notify_accel_fifo_reset(uint8_t instance);
void notify_gyro_fifo_reset(uint8_t instance);
// log an unexpected change in a register for an IMU
void log_register_change(uint32_t bus_id, const AP_HAL::Device::checkreg &reg);
// note that each backend is also expected to have a static detect()
// function which instantiates an instance of the backend sensor
// driver if the sensor is available
private:
bool should_log_imu_raw() const;
void log_accel_raw(uint8_t instance, const uint64_t sample_us, const Vector3f &accel);
void log_gyro_raw(uint8_t instance, const uint64_t sample_us, const Vector3f &gryo);
// logging
void Write_ACC(const uint8_t instance, const uint64_t sample_us, const Vector3f &accel) const; // Write ACC data packet: raw accel data
void Write_GYR(const uint8_t instance, const uint64_t sample_us, const Vector3f &gyro) const; // Write GYR data packet: raw gyro data
};