ardupilot/libraries/AC_PID/AC_P_1D.cpp

66 lines
2.4 KiB
C++

/// @file AC_P_1D.cpp
/// @brief Generic P algorithm
#include <AP_Math/AP_Math.h>
#include "AC_P_1D.h"
const AP_Param::GroupInfo AC_P_1D::var_info[] = {
// @Param: P
// @DisplayName: P Proportional Gain
// @Description: P Gain which produces an output value that is proportional to the current error value
AP_GROUPINFO("P", 0, AC_P_1D, _kp, 0),
AP_GROUPEND
};
// Constructor
AC_P_1D::AC_P_1D(float initial_p, float dt) :
_dt(dt)
{
// load parameter values from eeprom
AP_Param::setup_object_defaults(this, var_info);
_kp = initial_p;
_lim_D_Out = 10.0f; // maximum first differential of output
}
// update_all - set target and measured inputs to P controller and calculate outputs
// target and measurement are filtered
// if measurement is further than error_min or error_max (see set_limits_error method)
// the target is moved closer to the measurement and limit_min or limit_max will be set true
float AC_P_1D::update_all(float &target, float measurement, bool &limit_min, bool &limit_max)
{
limit_min = false;
limit_max = false;
// calculate distance _error
float error = target - measurement;
if (error < _lim_err_min) {
error = _lim_err_min;
target = measurement + error;
limit_min = true;
} else if (error > _lim_err_max) {
error = _lim_err_max;
target = measurement + error;
limit_max = true;
}
// ToDo: Replace sqrt_controller with optimal acceleration and jerk limited curve
// MIN(_Dxy_max, _D2xy_max / _kxy_P) limits the max accel to the point where max jerk is exceeded
return sqrt_controller(error, _kp, _lim_D_Out, _dt);
}
// set limits on error, output and output from D term
// in normal use the lim_err_min and lim_out_min will be negative
// when using for a position controller, lim_err will be position error, lim_out will be correction velocity, lim_D will be acceleration, lim_D2 will be jerk
void AC_P_1D::set_limits_error(float lim_err_min, float lim_err_max, float lim_out_min, float lim_out_max, float lim_D_Out, float lim_D2_Out)
{
_lim_D_Out = lim_D_Out;
if (is_positive(lim_D2_Out)) {
// limit the first derivative so as not to exceed the second derivative
_lim_D_Out = MIN(_lim_D_Out, lim_D2_Out / _kp);
}
_lim_err_min = MAX(inv_sqrt_controller(lim_out_min, _kp, _lim_D_Out), lim_err_min);
_lim_err_max = MAX(inv_sqrt_controller(lim_out_max, _kp, _lim_D_Out), lim_err_max);
}