ardupilot/ArduCopter/test.pde
2014-04-08 16:19:20 +10:00

455 lines
13 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#if CLI_ENABLED == ENABLED
// These are function definitions so the Menu can be constructed before the functions
// are defined below. Order matters to the compiler.
#if HIL_MODE == HIL_MODE_DISABLED
static int8_t test_baro(uint8_t argc, const Menu::arg *argv);
#endif
static int8_t test_compass(uint8_t argc, const Menu::arg *argv);
static int8_t test_ins(uint8_t argc, const Menu::arg *argv);
static int8_t test_motors(uint8_t argc, const Menu::arg *argv);
static int8_t test_motorsync(uint8_t argc, const Menu::arg *argv);
static int8_t test_optflow(uint8_t argc, const Menu::arg *argv);
static int8_t test_relay(uint8_t argc, const Menu::arg *argv);
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
static int8_t test_shell(uint8_t argc, const Menu::arg *argv);
#endif
#if HIL_MODE == HIL_MODE_DISABLED
static int8_t test_sonar(uint8_t argc, const Menu::arg *argv);
#endif
// Creates a constant array of structs representing menu options
// and stores them in Flash memory, not RAM.
// User enters the string in the console to call the functions on the right.
// See class Menu in AP_Coommon for implementation details
const struct Menu::command test_menu_commands[] PROGMEM = {
#if HIL_MODE == HIL_MODE_DISABLED
{"baro", test_baro},
#endif
{"compass", test_compass},
{"ins", test_ins},
{"motors", test_motors},
{"motorsync", test_motorsync},
{"optflow", test_optflow},
{"relay", test_relay},
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
{"shell", test_shell},
#endif
#if HIL_MODE == HIL_MODE_DISABLED
{"sonar", test_sonar},
#endif
};
// A Macro to create the Menu
MENU(test_menu, "test", test_menu_commands);
static int8_t
test_mode(uint8_t argc, const Menu::arg *argv)
{
test_menu.run();
return 0;
}
#if HIL_MODE == HIL_MODE_DISABLED
static int8_t
test_baro(uint8_t argc, const Menu::arg *argv)
{
int32_t alt;
print_hit_enter();
init_barometer(true);
while(1) {
delay(100);
alt = read_barometer();
if (!barometer.healthy) {
cliSerial->println_P(PSTR("not healthy"));
} else {
cliSerial->printf_P(PSTR("Alt: %0.2fm, Raw: %f Temperature: %.1f\n"),
alt / 100.0,
barometer.get_pressure(),
barometer.get_temperature());
}
if(cliSerial->available() > 0) {
return (0);
}
}
return 0;
}
#endif
static int8_t
test_compass(uint8_t argc, const Menu::arg *argv)
{
uint8_t delta_ms_fast_loop;
uint8_t medium_loopCounter = 0;
if (!g.compass_enabled) {
cliSerial->printf_P(PSTR("Compass: "));
print_enabled(false);
return (0);
}
if (!compass.init()) {
cliSerial->println_P(PSTR("Compass initialisation failed!"));
return 0;
}
ahrs.init();
ahrs.set_fly_forward(true);
ahrs.set_compass(&compass);
report_compass();
// we need the AHRS initialised for this test
ins.init(AP_InertialSensor::COLD_START,
ins_sample_rate);
ahrs.reset();
int16_t counter = 0;
float heading = 0;
print_hit_enter();
while(1) {
delay(20);
if (millis() - fast_loopTimer > 19) {
delta_ms_fast_loop = millis() - fast_loopTimer;
G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator
fast_loopTimer = millis();
// INS
// ---
ahrs.update();
medium_loopCounter++;
if(medium_loopCounter == 5) {
if (compass.read()) {
// Calculate heading
const Matrix3f &m = ahrs.get_dcm_matrix();
heading = compass.calculate_heading(m);
compass.learn_offsets();
}
medium_loopCounter = 0;
}
counter++;
if (counter>20) {
if (compass.healthy()) {
const Vector3f &mag_ofs = compass.get_offsets();
const Vector3f &mag = compass.get_field();
cliSerial->printf_P(PSTR("Heading: %ld, XYZ: %.0f, %.0f, %.0f,\tXYZoff: %6.2f, %6.2f, %6.2f\n"),
(wrap_360_cd(ToDeg(heading) * 100)) /100,
mag.x,
mag.y,
mag.z,
mag_ofs.x,
mag_ofs.y,
mag_ofs.z);
} else {
cliSerial->println_P(PSTR("compass not healthy"));
}
counter=0;
}
}
if (cliSerial->available() > 0) {
break;
}
}
// save offsets. This allows you to get sane offset values using
// the CLI before you go flying.
cliSerial->println_P(PSTR("saving offsets"));
compass.save_offsets();
return (0);
}
static int8_t
test_ins(uint8_t argc, const Menu::arg *argv)
{
Vector3f gyro, accel;
print_hit_enter();
cliSerial->printf_P(PSTR("INS\n"));
delay(1000);
ahrs.init();
ins.init(AP_InertialSensor::COLD_START,
ins_sample_rate);
cliSerial->printf_P(PSTR("...done\n"));
delay(50);
while(1) {
ins.update();
gyro = ins.get_gyro();
accel = ins.get_accel();
float test = accel.length() / GRAVITY_MSS;
cliSerial->printf_P(PSTR("a %7.4f %7.4f %7.4f g %7.4f %7.4f %7.4f t %7.4f \n"),
accel.x, accel.y, accel.z,
gyro.x, gyro.y, gyro.z,
test);
delay(40);
if(cliSerial->available() > 0) {
return (0);
}
}
}
static int8_t
test_motors(uint8_t argc, const Menu::arg *argv)
{
cliSerial->printf_P(PSTR(
"Connect battery for this test.\n"
"Motors will spin by frame position order.\n"
"Front (& right of centerline) motor first, then in clockwise order around frame.\n"
"Remember to disconnect battery after this test.\n"
"Any key to exit.\n"));
// ensure all values have been sent to motors
motors.set_update_rate(g.rc_speed);
motors.set_frame_orientation(g.frame_orientation);
motors.set_min_throttle(g.throttle_min);
motors.set_mid_throttle(g.throttle_mid);
// enable motors
init_rc_out();
while(1) {
delay(20);
read_radio();
motors.output_test();
if(cliSerial->available() > 0) {
g.esc_calibrate.set_and_save(0);
return(0);
}
}
}
// test_motorsync - suddenly increases pwm output to motors to test if ESC loses sync
static int8_t
test_motorsync(uint8_t argc, const Menu::arg *argv)
{
bool test_complete = false;
bool spin_motors = false;
uint32_t spin_start_time = 0;
uint32_t last_run_time;
int16_t last_throttle = 0;
int16_t c;
// check if radio is calibration
pre_arm_rc_checks();
if (!ap.pre_arm_rc_check) {
cliSerial->print_P(PSTR("radio not calibrated\n"));
return 0;
}
// print warning that motors will spin
// ask user to raise throttle
// inform how to stop test
cliSerial->print_P(PSTR("This sends sudden outputs to the motors based on the pilot's throttle to test for ESC loss of sync. Motors will spin so mount props up-side-down!\n Hold throttle low, then raise throttle stick to desired level and press A. Motors will spin for 2 sec and then return to low.\nPress any key to exit.\n"));
// clear out user input
while (cliSerial->available()) {
cliSerial->read();
}
// disable throttle and battery failsafe
g.failsafe_throttle = FS_THR_DISABLED;
g.failsafe_battery_enabled = FS_BATT_DISABLED;
// read radio
read_radio();
// exit immediately if throttle is not zero
if( g.rc_3.control_in != 0 ) {
cliSerial->print_P(PSTR("throttle not zero\n"));
return 0;
}
// clear out any user input
while (cliSerial->available()) {
cliSerial->read();
}
// enable motors and pass through throttle
init_rc_out();
output_min();
motors.armed(true);
// initialise run time
last_run_time = millis();
// main run while the test is not complete
while(!test_complete) {
// 50hz loop
if( millis() - last_run_time > 20 ) {
last_run_time = millis();
// read radio input
read_radio();
// display throttle value
if (abs(g.rc_3.control_in-last_throttle) > 10) {
cliSerial->printf_P(PSTR("\nThr:%d"),g.rc_3.control_in);
last_throttle = g.rc_3.control_in;
}
// decode user input
if (cliSerial->available()) {
c = cliSerial->read();
if (c == 'a' || c == 'A') {
spin_motors = true;
spin_start_time = millis();
// display user's throttle level
cliSerial->printf_P(PSTR("\nSpin motors at:%d"),(int)g.rc_3.control_in);
// clear out any other use input queued up
while (cliSerial->available()) {
cliSerial->read();
}
}else{
// any other input ends the test
test_complete = true;
motors.armed(false);
}
}
// check if time to stop motors
if (spin_motors) {
if ((millis() - spin_start_time) > 2000) {
spin_motors = false;
cliSerial->printf_P(PSTR("\nMotors stopped"));
}
}
// output to motors
if (spin_motors) {
// pass pilot throttle through to motors
motors.throttle_pass_through();
}else{
// spin motors at minimum
output_min();
}
}
}
// stop motors
motors.output_min();
motors.armed(false);
// clear out any user input
while( cliSerial->available() ) {
cliSerial->read();
}
// display completion message
cliSerial->printf_P(PSTR("\nTest complete\n"));
return 0;
}
static int8_t
test_optflow(uint8_t argc, const Menu::arg *argv)
{
#if OPTFLOW == ENABLED
if(g.optflow_enabled) {
cliSerial->printf_P(PSTR("man id: %d\t"),optflow.read_register(ADNS3080_PRODUCT_ID));
print_hit_enter();
while(1) {
delay(200);
optflow.update();
cliSerial->printf_P(PSTR("dx:%d\t dy:%d\t squal:%d\n"),
optflow.dx,
optflow.dy,
optflow.surface_quality);
if(cliSerial->available() > 0) {
return (0);
}
}
} else {
cliSerial->printf_P(PSTR("OptFlow: "));
print_enabled(false);
}
return (0);
#else
return (0);
#endif // OPTFLOW == ENABLED
}
static int8_t test_relay(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
while(1) {
cliSerial->printf_P(PSTR("Relay on\n"));
relay.on(0);
delay(3000);
if(cliSerial->available() > 0) {
return (0);
}
cliSerial->printf_P(PSTR("Relay off\n"));
relay.off(0);
delay(3000);
if(cliSerial->available() > 0) {
return (0);
}
}
}
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
/*
* run a debug shell
*/
static int8_t
test_shell(uint8_t argc, const Menu::arg *argv)
{
hal.util->run_debug_shell(cliSerial);
return 0;
}
#endif
#if HIL_MODE == HIL_MODE_DISABLED
/*
* test the sonar
*/
static int8_t
test_sonar(uint8_t argc, const Menu::arg *argv)
{
#if CONFIG_SONAR == ENABLED
if(g.sonar_enabled == false) {
cliSerial->printf_P(PSTR("Sonar disabled\n"));
return (0);
}
// make sure sonar is initialised
init_sonar();
print_hit_enter();
while(1) {
delay(100);
cliSerial->printf_P(PSTR("Sonar: %d cm\n"), sonar->read());
if(cliSerial->available() > 0) {
return (0);
}
}
#endif
return (0);
}
#endif
static void print_hit_enter()
{
cliSerial->printf_P(PSTR("Hit Enter to exit.\n\n"));
}
#endif // CLI_ENABLED