mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-08 00:48:30 -04:00
6061ee4b81
thanks to Michael Oborne for noticing this! git-svn-id: https://arducopter.googlecode.com/svn/trunk@2952 f9c3cf11-9bcb-44bc-f272-b75c42450872
229 lines
7.3 KiB
C++
229 lines
7.3 KiB
C++
/*
|
|
APM_RC.cpp - Radio Control Library for Ardupilot Mega. Arduino
|
|
Code by Jordi Muñoz and Jose Julio. DIYDrones.com
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
RC Input : PPM signal on IC4 pin
|
|
RC Output : 11 Servo outputs (standard 20ms frame)
|
|
|
|
Methods:
|
|
Init() : Initialization of interrupts an Timers
|
|
OutpuCh(ch,pwm) : Output value to servos (range : 900-2100us) ch=0..10
|
|
InputCh(ch) : Read a channel input value. ch=0..7
|
|
GetState() : Returns the state of the input. 1 => New radio frame to process
|
|
Automatically resets when we call InputCh to read channels
|
|
|
|
*/
|
|
#include "APM_RC.h"
|
|
|
|
#include <avr/interrupt.h>
|
|
#include "WProgram.h"
|
|
|
|
#if !defined(__AVR_ATmega1280__) && !defined(__AVR_ATmega2560__)
|
|
# error Please check the Tools/Board menu to ensure you have selected Arduino Mega as your target.
|
|
#else
|
|
|
|
// Variable definition for Input Capture interrupt
|
|
volatile unsigned int ICR4_old;
|
|
volatile unsigned char PPM_Counter=0;
|
|
volatile uint16_t PWM_RAW[8] = {2400,2400,2400,2400,2400,2400,2400,2400};
|
|
volatile unsigned char radio_status=0;
|
|
|
|
/****************************************************
|
|
Input Capture Interrupt ICP4 => PPM signal read
|
|
****************************************************/
|
|
ISR(TIMER4_CAPT_vect)
|
|
{
|
|
unsigned int Pulse;
|
|
unsigned int Pulse_Width;
|
|
|
|
Pulse=ICR4;
|
|
if (Pulse<ICR4_old) // Take care of the overflow of Timer4 (TOP=40000)
|
|
Pulse_Width=(Pulse + 40000)-ICR4_old; //Calculating pulse
|
|
else
|
|
Pulse_Width=Pulse-ICR4_old; //Calculating pulse
|
|
if (Pulse_Width>8000) // SYNC pulse?
|
|
PPM_Counter=0;
|
|
else
|
|
{
|
|
if (PPM_Counter < (sizeof(PWM_RAW) / sizeof(PWM_RAW[0]))) {
|
|
PWM_RAW[PPM_Counter++]=Pulse_Width; //Saving pulse.
|
|
if (PPM_Counter >= NUM_CHANNELS)
|
|
radio_status = 1;
|
|
}
|
|
}
|
|
ICR4_old = Pulse;
|
|
}
|
|
|
|
|
|
// Constructors ////////////////////////////////////////////////////////////////
|
|
|
|
APM_RC_Class::APM_RC_Class()
|
|
{
|
|
}
|
|
|
|
// Public Methods //////////////////////////////////////////////////////////////
|
|
void APM_RC_Class::Init(void)
|
|
{
|
|
// Init PWM Timer 1
|
|
pinMode(11,OUTPUT); //OUT9 (PB5/OC1A)
|
|
pinMode(12,OUTPUT); //OUT2 (PB6/OC1B)
|
|
pinMode(13,OUTPUT); //OUT3 (PB7/OC1C)
|
|
|
|
//Remember the registers not declared here remains zero by default...
|
|
TCCR1A =((1<<WGM11)|(1<<COM1A1)|(1<<COM1B1)|(1<<COM1C1)); //Please read page 131 of DataSheet, we are changing the registers settings of WGM11,COM1B1,COM1A1 to 1 thats all...
|
|
TCCR1B = (1<<WGM13)|(1<<WGM12)|(1<<CS11); //Prescaler set to 8, that give us a resolution of 0.5us, read page 134 of data sheet
|
|
//OCR1A = 3000; //PB5, OUT9
|
|
//OCR1B = 3000; //PB6, OUT2
|
|
//OCR1C = 3000; //PB7 OUT3
|
|
ICR1 = 40000; //50hz freq...Datasheet says (system_freq/prescaler)/target frequency. So (16000000hz/8)/50hz=40000,
|
|
|
|
// Init PWM Timer 3
|
|
pinMode(2,OUTPUT); //OUT7 (PE4/OC3B)
|
|
pinMode(3,OUTPUT); //OUT6 (PE5/OC3C)
|
|
pinMode(5,OUTPUT); //OUT10(PE3/OC3A)
|
|
TCCR3A =((1<<WGM31)|(1<<COM3A1)|(1<<COM3B1)|(1<<COM3C1));
|
|
TCCR3B = (1<<WGM33)|(1<<WGM32)|(1<<CS31);
|
|
//OCR3A = 3000; //PE3, OUT10
|
|
//OCR3B = 3000; //PE4, OUT7
|
|
//OCR3C = 3000; //PE5, OUT6
|
|
ICR3 = 40000; //50hz freq
|
|
|
|
// Init PWM Timer 5
|
|
pinMode(44,OUTPUT); //OUT1 (PL5/OC5C)
|
|
pinMode(45,OUTPUT); //OUT0 (PL4/OC5B)
|
|
pinMode(46,OUTPUT); //OUT8 (PL3/OC5A)
|
|
|
|
TCCR5A =((1<<WGM51)|(1<<COM5A1)|(1<<COM5B1)|(1<<COM5C1));
|
|
TCCR5B = (1<<WGM53)|(1<<WGM52)|(1<<CS51);
|
|
//OCR5A = 3000; //PL3, OUT8
|
|
//OCR5B = 3000; //PL4, OUT0
|
|
//OCR5C = 3000; //PL5, OUT1
|
|
ICR5 = 40000; //50hz freq
|
|
|
|
// Init PPM input and PWM Timer 4
|
|
pinMode(49, INPUT); // ICP4 pin (PL0) (PPM input)
|
|
pinMode(7,OUTPUT); //OUT5 (PH4/OC4B)
|
|
pinMode(8,OUTPUT); //OUT4 (PH5/OC4C)
|
|
|
|
TCCR4A =((1<<WGM40)|(1<<WGM41)|(1<<COM4C1)|(1<<COM4B1)|(1<<COM4A1));
|
|
//Prescaler set to 8, that give us a resolution of 0.5us
|
|
// Input Capture rising edge
|
|
TCCR4B = ((1<<WGM43)|(1<<WGM42)|(1<<CS41)|(1<<ICES4));
|
|
|
|
OCR4A = 40000; ///50hz freq.
|
|
OCR4B = 3000; //PH4, OUT5
|
|
OCR4C = 3000; //PH5, OUT4
|
|
|
|
//TCCR4B |=(1<<ICES4); //Changing edge detector (rising edge).
|
|
//TCCR4B &=(~(1<<ICES4)); //Changing edge detector. (falling edge)
|
|
TIMSK4 |= (1<<ICIE4); // Enable Input Capture interrupt. Timer interrupt mask
|
|
}
|
|
|
|
void APM_RC_Class::OutputCh(unsigned char ch, uint16_t pwm)
|
|
{
|
|
pwm=constrain(pwm,MIN_PULSEWIDTH,MAX_PULSEWIDTH);
|
|
pwm<<=1; // pwm*2;
|
|
|
|
switch(ch)
|
|
{
|
|
case 0: OCR5B=pwm; break; //ch0
|
|
case 1: OCR5C=pwm; break; //ch1
|
|
case 2: OCR1B=pwm; break; //ch2
|
|
case 3: OCR1C=pwm; break; //ch3
|
|
case 4: OCR4C=pwm; break; //ch4
|
|
case 5: OCR4B=pwm; break; //ch5
|
|
case 6: OCR3C=pwm; break; //ch6
|
|
case 7: OCR3B=pwm; break; //ch7
|
|
case 8: OCR5A=pwm; break; //ch8, PL3
|
|
case 9: OCR1A=pwm; break; //ch9, PB5
|
|
case 10: OCR3A=pwm; break; //ch10, PE3
|
|
}
|
|
}
|
|
|
|
uint16_t APM_RC_Class::InputCh(unsigned char ch)
|
|
{
|
|
uint16_t result;
|
|
uint16_t result2;
|
|
|
|
if (_HIL_override[ch] != 0) {
|
|
return _HIL_override[ch];
|
|
}
|
|
|
|
// Because servo pulse variables are 16 bits and the interrupts are running values could be corrupted.
|
|
// We dont want to stop interrupts to read radio channels so we have to do two readings to be sure that the value is correct...
|
|
result = PWM_RAW[ch]>>1; // Because timer runs at 0.5us we need to do value/2
|
|
result2 = PWM_RAW[ch]>>1;
|
|
if (result != result2)
|
|
result = PWM_RAW[ch]>>1; // if the results are different we make a third reading (this should be fine)
|
|
|
|
// Limit values to a valid range
|
|
result = constrain(result,MIN_PULSEWIDTH,MAX_PULSEWIDTH);
|
|
radio_status=0; // Radio channel read
|
|
return(result);
|
|
}
|
|
|
|
unsigned char APM_RC_Class::GetState(void)
|
|
{
|
|
return(radio_status);
|
|
}
|
|
|
|
// InstantPWM implementation
|
|
// This function forces the PWM output (reset PWM) on Out0 and Out1 (Timer5). For quadcopters use
|
|
void APM_RC_Class::Force_Out0_Out1(void)
|
|
{
|
|
if (TCNT5>5000) // We take care that there are not a pulse in the output
|
|
TCNT5=39990; // This forces the PWM output to reset in 5us (10 counts of 0.5us). The counter resets at 40000
|
|
}
|
|
// This function forces the PWM output (reset PWM) on Out2 and Out3 (Timer1). For quadcopters use
|
|
void APM_RC_Class::Force_Out2_Out3(void)
|
|
{
|
|
if (TCNT1>5000)
|
|
TCNT1=39990;
|
|
}
|
|
// This function forces the PWM output (reset PWM) on Out6 and Out7 (Timer3). For quadcopters use
|
|
void APM_RC_Class::Force_Out6_Out7(void)
|
|
{
|
|
if (TCNT3>5000)
|
|
TCNT3=39990;
|
|
}
|
|
|
|
// allow HIL override of RC values
|
|
// A value of -1 means no change
|
|
// A value of 0 means no override, use the real RC values
|
|
bool APM_RC_Class::setHIL(int16_t v[NUM_CHANNELS])
|
|
{
|
|
uint8_t sum = 0;
|
|
for (unsigned char i=0; i<NUM_CHANNELS; i++) {
|
|
if (v[i] != -1) {
|
|
_HIL_override[i] = v[i];
|
|
}
|
|
if (_HIL_override[i] != 0) {
|
|
sum++;
|
|
}
|
|
}
|
|
radio_status = 1;
|
|
if (sum == 0) {
|
|
return 0;
|
|
} else {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
void APM_RC_Class::clearOverride(void)
|
|
{
|
|
for (unsigned char i=0; i<NUM_CHANNELS; i++) {
|
|
_HIL_override[i] = 0;
|
|
}
|
|
}
|
|
|
|
|
|
// make one instance for the user to use
|
|
APM_RC_Class APM_RC;
|
|
|
|
#endif // defined(ATMega1280)
|