mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-18 14:48:28 -04:00
258 lines
7.0 KiB
C++
258 lines
7.0 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
// Copyright 2010 Michael Smith, all rights reserved.
|
|
|
|
// Derived closely from:
|
|
/****************************************
|
|
* 3D Vector Classes
|
|
* By Bill Perone (billperone@yahoo.com)
|
|
* Original: 9-16-2002
|
|
* Revised: 19-11-2003
|
|
* 11-12-2003
|
|
* 18-12-2003
|
|
* 06-06-2004
|
|
*
|
|
* Copyright 2003, This code is provided "as is" and you can use it freely as long as
|
|
* credit is given to Bill Perone in the application it is used in
|
|
*
|
|
* Notes:
|
|
* if a*b = 0 then a & b are orthogonal
|
|
* a%b = -b%a
|
|
* a*(b%c) = (a%b)*c
|
|
* a%b = a(cast to matrix)*b
|
|
* (a%b).length() = area of parallelogram formed by a & b
|
|
* (a%b).length() = a.length()*b.length() * sin(angle between a & b)
|
|
* (a%b).length() = 0 if angle between a & b = 0 or a.length() = 0 or b.length() = 0
|
|
* a * (b%c) = volume of parallelpiped formed by a, b, c
|
|
* vector triple product: a%(b%c) = b*(a*c) - c*(a*b)
|
|
* scalar triple product: a*(b%c) = c*(a%b) = b*(c%a)
|
|
* vector quadruple product: (a%b)*(c%d) = (a*c)*(b*d) - (a*d)*(b*c)
|
|
* if a is unit vector along b then a%b = -b%a = -b(cast to matrix)*a = 0
|
|
* vectors a1...an are linearly dependent if there exists a vector of scalars (b) where a1*b1 + ... + an*bn = 0
|
|
* or if the matrix (A) * b = 0
|
|
*
|
|
****************************************/
|
|
#pragma once
|
|
|
|
#include <cmath>
|
|
#include <float.h>
|
|
#include <string.h>
|
|
#if MATH_CHECK_INDEXES
|
|
#include <assert.h>
|
|
#endif
|
|
|
|
#include "rotations.h"
|
|
|
|
template <typename T>
|
|
class Matrix3;
|
|
|
|
template <typename T>
|
|
class Vector3
|
|
{
|
|
|
|
public:
|
|
T x, y, z;
|
|
|
|
// trivial ctor
|
|
constexpr Vector3<T>()
|
|
: x(0)
|
|
, y(0)
|
|
, z(0) {}
|
|
|
|
// setting ctor
|
|
constexpr Vector3<T>(const T x0, const T y0, const T z0)
|
|
: x(x0)
|
|
, y(y0)
|
|
, z(z0) {}
|
|
|
|
// function call operator
|
|
void operator ()(const T x0, const T y0, const T z0)
|
|
{
|
|
x= x0; y= y0; z= z0;
|
|
}
|
|
|
|
// test for equality
|
|
bool operator ==(const Vector3<T> &v) const;
|
|
|
|
// test for inequality
|
|
bool operator !=(const Vector3<T> &v) const;
|
|
|
|
// negation
|
|
Vector3<T> operator -(void) const;
|
|
|
|
// addition
|
|
Vector3<T> operator +(const Vector3<T> &v) const;
|
|
|
|
// subtraction
|
|
Vector3<T> operator -(const Vector3<T> &v) const;
|
|
|
|
// uniform scaling
|
|
Vector3<T> operator *(const T num) const;
|
|
|
|
// uniform scaling
|
|
Vector3<T> operator /(const T num) const;
|
|
|
|
// addition
|
|
Vector3<T> &operator +=(const Vector3<T> &v);
|
|
|
|
// subtraction
|
|
Vector3<T> &operator -=(const Vector3<T> &v);
|
|
|
|
// uniform scaling
|
|
Vector3<T> &operator *=(const T num);
|
|
|
|
// uniform scaling
|
|
Vector3<T> &operator /=(const T num);
|
|
|
|
// non-uniform scaling
|
|
Vector3<T> &operator *=(const Vector3<T> &v) {
|
|
x *= v.x; y *= v.y; z *= v.z;
|
|
return *this;
|
|
}
|
|
|
|
// allow a vector3 to be used as an array, 0 indexed
|
|
T & operator[](uint8_t i) {
|
|
T *_v = &x;
|
|
#if MATH_CHECK_INDEXES
|
|
assert(i >= 0 && i < 3);
|
|
#endif
|
|
return _v[i];
|
|
}
|
|
|
|
const T & operator[](uint8_t i) const {
|
|
const T *_v = &x;
|
|
#if MATH_CHECK_INDEXES
|
|
assert(i >= 0 && i < 3);
|
|
#endif
|
|
return _v[i];
|
|
}
|
|
|
|
// dot product
|
|
T operator *(const Vector3<T> &v) const;
|
|
|
|
// multiply a row vector by a matrix, to give a row vector
|
|
Vector3<T> operator *(const Matrix3<T> &m) const;
|
|
|
|
// multiply a column vector by a row vector, returning a 3x3 matrix
|
|
Matrix3<T> mul_rowcol(const Vector3<T> &v) const;
|
|
|
|
// cross product
|
|
Vector3<T> operator %(const Vector3<T> &v) const;
|
|
|
|
// computes the angle between this vector and another vector
|
|
float angle(const Vector3<T> &v2) const;
|
|
|
|
// check if any elements are NAN
|
|
bool is_nan(void) const WARN_IF_UNUSED;
|
|
|
|
// check if any elements are infinity
|
|
bool is_inf(void) const WARN_IF_UNUSED;
|
|
|
|
// check if all elements are zero
|
|
bool is_zero(void) const WARN_IF_UNUSED {
|
|
return (fabsf(x) < FLT_EPSILON) &&
|
|
(fabsf(y) < FLT_EPSILON) &&
|
|
(fabsf(z) < FLT_EPSILON);
|
|
}
|
|
|
|
|
|
// rotate by a standard rotation
|
|
void rotate(enum Rotation rotation);
|
|
void rotate_inverse(enum Rotation rotation);
|
|
|
|
// gets the length of this vector squared
|
|
T length_squared() const
|
|
{
|
|
return (T)(*this * *this);
|
|
}
|
|
|
|
// gets the length of this vector
|
|
float length(void) const;
|
|
|
|
// normalizes this vector
|
|
void normalize()
|
|
{
|
|
*this /= length();
|
|
}
|
|
|
|
// zero the vector
|
|
void zero()
|
|
{
|
|
x = y = z = 0;
|
|
}
|
|
|
|
// returns the normalized version of this vector
|
|
Vector3<T> normalized() const
|
|
{
|
|
return *this/length();
|
|
}
|
|
|
|
// reflects this vector about n
|
|
void reflect(const Vector3<T> &n)
|
|
{
|
|
Vector3<T> orig(*this);
|
|
project(n);
|
|
*this = *this*2 - orig;
|
|
}
|
|
|
|
// projects this vector onto v
|
|
void project(const Vector3<T> &v)
|
|
{
|
|
*this= v * (*this * v)/(v*v);
|
|
}
|
|
|
|
// returns this vector projected onto v
|
|
Vector3<T> projected(const Vector3<T> &v) const
|
|
{
|
|
return v * (*this * v)/(v*v);
|
|
}
|
|
|
|
// distance from the tip of this vector to another vector squared (so as to avoid the sqrt calculation)
|
|
float distance_squared(const Vector3<T> &v) const {
|
|
const float dist_x = x-v.x;
|
|
const float dist_y = y-v.y;
|
|
const float dist_z = z-v.z;
|
|
return (dist_x*dist_x + dist_y*dist_y + dist_z*dist_z);
|
|
}
|
|
|
|
// distance from the tip of this vector to a line segment specified by two vectors
|
|
float distance_to_segment(const Vector3<T> &seg_start, const Vector3<T> &seg_end) const;
|
|
|
|
// given a position p1 and a velocity v1 produce a vector
|
|
// perpendicular to v1 maximising distance from p1. If p1 is the
|
|
// zero vector the return from the function will always be the
|
|
// zero vector - that should be checked for.
|
|
static Vector3<T> perpendicular(const Vector3<T> &p1, const Vector3<T> &v1)
|
|
{
|
|
const T d = p1 * v1;
|
|
if (fabsf(d) < FLT_EPSILON) {
|
|
return p1;
|
|
}
|
|
const Vector3<T> parallel = (v1 * d) / v1.length_squared();
|
|
Vector3<T> perpendicular = p1 - parallel;
|
|
|
|
return perpendicular;
|
|
}
|
|
|
|
};
|
|
|
|
typedef Vector3<int16_t> Vector3i;
|
|
typedef Vector3<uint16_t> Vector3ui;
|
|
typedef Vector3<int32_t> Vector3l;
|
|
typedef Vector3<uint32_t> Vector3ul;
|
|
typedef Vector3<float> Vector3f;
|
|
typedef Vector3<double> Vector3d;
|