mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-25 10:08:28 -04:00
86 lines
3.2 KiB
Matlab
86 lines
3.2 KiB
Matlab
%% Set initial conditions
|
|
clear all;
|
|
load('fltTest.mat');
|
|
startDelayTime = 100; % number of seconds to delay filter start (used to simulate in-flight restart)
|
|
dt = 1/50;
|
|
indexLimit = length(IMU);
|
|
magIndexlimit = length(MAG);
|
|
statesLog = zeros(10,indexLimit);
|
|
eulLog = zeros(4,indexLimit);
|
|
velInnovLog = zeros(4,indexLimit);
|
|
angErrLog = zeros(2,indexLimit);
|
|
decInnovLog = zeros(2,magIndexlimit);
|
|
velInnovVarLog = velInnovLog;
|
|
decInnovVarLog = decInnovLog;
|
|
% initialise the state vector and quaternion
|
|
states = zeros(9,1);
|
|
quat = [1;0;0;0];
|
|
Tbn = Quat2Tbn(quat);
|
|
% average last 10 accel readings to reduce effect of noise
|
|
initAccel(1) = mean(IMU(1:10,6));
|
|
initAccel(2) = mean(IMU(1:10,7));
|
|
initAccel(3) = mean(IMU(1:10,8));
|
|
% Use averaged accel readings to align tilt
|
|
quat = AlignTilt(quat,initAccel);
|
|
% Set the expected declination
|
|
measDec = 0.18;
|
|
% define the state covariances
|
|
Sigma_velNED = 0.5; % 1 sigma uncertainty in horizontal velocity components
|
|
Sigma_dAngBias = 5*pi/180*dt; % 1 Sigma uncertainty in delta angle bias
|
|
Sigma_angErr = 1; % 1 Sigma uncertainty in angular misalignment (rad)
|
|
covariance = single(diag([Sigma_angErr*[1;1;1];Sigma_velNED*[1;1;1];Sigma_dAngBias*[1;1;1]].^2));
|
|
%% Main Loop
|
|
magIndex = 1;
|
|
time = 0;
|
|
angErr = 0;
|
|
headingAligned = 0;
|
|
% delay start by a minimum of 10 IMU samples to allow for initial tilt
|
|
% alignment delay
|
|
startIndex = max(11,ceil(startDelayTime/dt));
|
|
for index = startIndex:indexLimit
|
|
time=time+dt + startIndex*dt;
|
|
% read IMU measurements
|
|
angRate = IMU(index,3:5)';
|
|
% switch in a bias offset to test the filter
|
|
if (time > +inf)
|
|
angRate = angRate + [1;-1;1]*pi/180;
|
|
end
|
|
accel = IMU(index,6:8)';
|
|
% predict states
|
|
[quat, states, Tbn, delAng, delVel] = PredictStates(quat,states,angRate,accel,dt);
|
|
statesLog(1,index) = time;
|
|
statesLog(2:10,index) = states;
|
|
eulLog(1,index) = time;
|
|
eulLog(2:4,index) = QuatToEul(quat);
|
|
% predict covariance matrix
|
|
covariance = PredictCovariance(delAng,delVel,quat,states,covariance,dt);
|
|
% fuse velocity measurements - use synthetic measurements
|
|
measVel = [0;0;0];
|
|
[quat,states,angErr,covariance,velInnov,velInnovVar] = FuseVelocity(quat,states,covariance,measVel);
|
|
velInnovLog(1,index) = time;
|
|
velInnovLog(2:4,index) = velInnov;
|
|
velInnovVarLog(1,index) = time;
|
|
velInnovVarLog(2:4,index) = velInnovVar;
|
|
angErrLog(1,index) = time;
|
|
angErrLog(2,index) = angErr;
|
|
% read magnetometer measurements
|
|
while ((MAG(magIndex,1) < IMU(index,1)) && (magIndex < magIndexlimit))
|
|
magIndex = magIndex + 1;
|
|
magBody = 0.001*MAG(magIndex,3:5)';
|
|
if (time >= 1.0 && headingAligned==0 && angErr < 1e-3)
|
|
quat = AlignHeading(quat,magBody,measDec);
|
|
headingAligned = 1;
|
|
end
|
|
% fuse magnetometer measurements if new data available and when tilt has settled
|
|
if (headingAligned == 1)
|
|
[quat,states,covariance,decInnov,decInnovVar] = FuseMagnetometer(quat,states,covariance,magBody,measDec,Tbn);
|
|
decInnovLog(1,magIndex) = time;
|
|
decInnovLog(2,magIndex) = decInnov;
|
|
decInnovVarLog(1,magIndex) = time;
|
|
decInnovVarLog(2,magIndex) = decInnovVar;
|
|
end
|
|
end
|
|
end
|
|
|
|
%% Generate plots
|
|
PlotData; |