mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-20 07:38:28 -04:00
e49c2d2871
Signed-off-by: Robert Lefebvre <robert.lefebvre@gmail.com>
285 lines
9.5 KiB
Plaintext
285 lines
9.5 KiB
Plaintext
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#if FRAME_CONFIG == HELI_FRAME
|
|
|
|
#define HELI_SERVO_AVERAGING_DIGITAL 0 // 250Hz
|
|
#define HELI_SERVO_AVERAGING_ANALOG 2 // 125Hz
|
|
|
|
static bool heli_swash_initialised = false;
|
|
static int heli_throttle_mid = 0; // throttle mid point in pwm form (i.e. 0 ~ 1000)
|
|
static float heli_collective_scalar = 1; // throttle scalar to convert pwm form (i.e. 0 ~ 1000) passed in to actual servo range (i.e 1250~1750 would be 500)
|
|
|
|
// heli_servo_averaging:
|
|
// 0 or 1 = no averaging, 250hz
|
|
// 2 = average two samples, 125hz
|
|
// 3 = averaging three samples = 83.3 hz
|
|
// 4 = averaging four samples = 62.5 hz
|
|
// 5 = averaging 5 samples = 50hz
|
|
// digital = 0 / 250hz, analog = 2 / 83.3
|
|
|
|
// reset swash for maximum movements - used for set-up
|
|
static void heli_reset_swash()
|
|
{
|
|
// free up servo ranges
|
|
g.heli_servo_1.radio_min = 1000;
|
|
g.heli_servo_1.radio_max = 2000;
|
|
g.heli_servo_2.radio_min = 1000;
|
|
g.heli_servo_2.radio_max = 2000;
|
|
g.heli_servo_3.radio_min = 1000;
|
|
g.heli_servo_3.radio_max = 2000;
|
|
|
|
// pitch factors
|
|
heli_pitchFactor[CH_1] = cos(radians(g.heli_servo1_pos - g.heli_phase_angle));
|
|
heli_pitchFactor[CH_2] = cos(radians(g.heli_servo2_pos - g.heli_phase_angle));
|
|
heli_pitchFactor[CH_3] = cos(radians(g.heli_servo3_pos - g.heli_phase_angle));
|
|
|
|
// roll factors
|
|
heli_rollFactor[CH_1] = cos(radians(g.heli_servo1_pos + 90 - g.heli_phase_angle));
|
|
heli_rollFactor[CH_2] = cos(radians(g.heli_servo2_pos + 90 - g.heli_phase_angle));
|
|
heli_rollFactor[CH_3] = cos(radians(g.heli_servo3_pos + 90 - g.heli_phase_angle));
|
|
|
|
// set throttle scaling
|
|
heli_collective_scalar = ((float)(g.rc_3.radio_max - g.rc_3.radio_min))/1000.0;
|
|
|
|
// we must be in set-up mode so mark swash as uninitialised
|
|
heli_swash_initialised = false;
|
|
}
|
|
|
|
// initialise the swash
|
|
static void heli_init_swash()
|
|
{
|
|
int i;
|
|
|
|
// swash servo initialisation
|
|
g.heli_servo_1.set_range(0,1000);
|
|
g.heli_servo_2.set_range(0,1000);
|
|
g.heli_servo_3.set_range(0,1000);
|
|
g.heli_servo_4.set_angle(4500);
|
|
|
|
// ensure g.heli_coll values are reasonable
|
|
if( g.heli_collective_min >= g.heli_collective_max ) {
|
|
g.heli_collective_min = 1000;
|
|
g.heli_collective_max = 2000;
|
|
}
|
|
g.heli_collective_mid = constrain(g.heli_collective_mid, g.heli_collective_min, g.heli_collective_max);
|
|
|
|
// calculate throttle mid point
|
|
heli_throttle_mid = ((float)(g.heli_collective_mid-g.heli_collective_min))/((float)(g.heli_collective_max-g.heli_collective_min))*1000.0;
|
|
|
|
// determine scalar throttle input
|
|
heli_collective_scalar = ((float)(g.heli_collective_max-g.heli_collective_min))/1000.0;
|
|
|
|
// pitch factors
|
|
heli_pitchFactor[CH_1] = cos(radians(g.heli_servo1_pos - g.heli_phase_angle));
|
|
heli_pitchFactor[CH_2] = cos(radians(g.heli_servo2_pos - g.heli_phase_angle));
|
|
heli_pitchFactor[CH_3] = cos(radians(g.heli_servo3_pos - g.heli_phase_angle));
|
|
|
|
// roll factors
|
|
heli_rollFactor[CH_1] = cos(radians(g.heli_servo1_pos + 90 - g.heli_phase_angle));
|
|
heli_rollFactor[CH_2] = cos(radians(g.heli_servo2_pos + 90 - g.heli_phase_angle));
|
|
heli_rollFactor[CH_3] = cos(radians(g.heli_servo3_pos + 90 - g.heli_phase_angle));
|
|
|
|
// servo min/max values
|
|
g.heli_servo_1.radio_min = 1000;
|
|
g.heli_servo_1.radio_max = 2000;
|
|
g.heli_servo_2.radio_min = 1000;
|
|
g.heli_servo_2.radio_max = 2000;
|
|
g.heli_servo_3.radio_min = 1000;
|
|
g.heli_servo_3.radio_max = 2000;
|
|
|
|
// reset the servo averaging
|
|
for( i=0; i<=3; i++ )
|
|
heli_servo_out[i] = 0;
|
|
|
|
// double check heli_servo_averaging is reasonable
|
|
if( g.heli_servo_averaging < 0 || g.heli_servo_averaging > 5 ) {
|
|
g.heli_servo_averaging = 0;
|
|
g.heli_servo_averaging.save();
|
|
}
|
|
|
|
// mark swash as initialised
|
|
heli_swash_initialised = true;
|
|
}
|
|
|
|
static void heli_move_servos_to_mid()
|
|
{
|
|
// call multiple times to force through the servo averaging
|
|
for( int i=0; i<5; i++ ) {
|
|
heli_move_swash(0,0,500,0);
|
|
delay(20);
|
|
}
|
|
}
|
|
|
|
//
|
|
// heli_move_swash - moves swash plate to attitude of parameters passed in
|
|
// - expected ranges:
|
|
// roll : -4500 ~ 4500
|
|
// pitch: -4500 ~ 4500
|
|
// collective: 0 ~ 1000
|
|
// yaw: -4500 ~ 4500
|
|
//
|
|
static void heli_move_swash(int roll_out, int pitch_out, int coll_out, int yaw_out)
|
|
{
|
|
int yaw_offset = 0;
|
|
int coll_out_scaled;
|
|
|
|
if( g.heli_servo_manual == 1 ) { // are we in manual servo mode? (i.e. swash set-up mode)?
|
|
// check if we need to freeup the swash
|
|
if( heli_swash_initialised ) {
|
|
heli_reset_swash();
|
|
}
|
|
coll_out_scaled = coll_out * heli_collective_scalar + g.rc_3.radio_min - 1000;
|
|
}else{ // regular flight mode
|
|
|
|
// check if we need to reinitialise the swash
|
|
if( !heli_swash_initialised ) {
|
|
heli_init_swash();
|
|
}
|
|
|
|
// ensure values are acceptable:
|
|
roll_out = constrain(roll_out, (int)-g.heli_roll_max, (int)g.heli_roll_max);
|
|
pitch_out = constrain(pitch_out, (int)-g.heli_pitch_max, (int)g.heli_pitch_max);
|
|
coll_out = constrain(coll_out, 0, 1000);
|
|
coll_out_scaled = coll_out * heli_collective_scalar + g.heli_collective_min - 1000;
|
|
|
|
// rescale roll_out and pitch-out into the min and max ranges to provide linear motion
|
|
// across the input range instead of stopping when the input hits the constrain value
|
|
// these calculations are based on an assumption of the user specified roll_max and pitch_max
|
|
// coming into this equation at 4500 or less, and based on the original assumption of the
|
|
// total g.heli_servo_x.servo_out range being -4500 to 4500.
|
|
roll_out = (-g.heli_roll_max + (float)( 2 * g.heli_roll_max * (roll_out + 4500.0)/9000.0));
|
|
pitch_out = (-g.heli_pitch_max + (float)(2 * g.heli_pitch_max * (pitch_out + 4500.0)/9000.0));
|
|
|
|
|
|
// rudder feed forward based on collective
|
|
#if HIL_MODE == HIL_MODE_DISABLED // don't do rudder feed forward in simulator
|
|
if( !g.heli_ext_gyro_enabled ) {
|
|
yaw_offset = g.heli_collective_yaw_effect * abs(coll_out_scaled - g.heli_collective_mid);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// swashplate servos
|
|
g.heli_servo_1.servo_out = (heli_rollFactor[CH_1] * roll_out + heli_pitchFactor[CH_1] * pitch_out)/10 + coll_out_scaled + (g.heli_servo_1.radio_trim-1500);
|
|
g.heli_servo_2.servo_out = (heli_rollFactor[CH_2] * roll_out + heli_pitchFactor[CH_2] * pitch_out)/10 + coll_out_scaled + (g.heli_servo_2.radio_trim-1500);
|
|
g.heli_servo_3.servo_out = (heli_rollFactor[CH_3] * roll_out + heli_pitchFactor[CH_3] * pitch_out)/10 + coll_out_scaled + (g.heli_servo_3.radio_trim-1500);
|
|
g.heli_servo_4.servo_out = yaw_out + yaw_offset;
|
|
|
|
// use servo_out to calculate pwm_out and radio_out
|
|
g.heli_servo_1.calc_pwm();
|
|
g.heli_servo_2.calc_pwm();
|
|
g.heli_servo_3.calc_pwm();
|
|
g.heli_servo_4.calc_pwm();
|
|
|
|
// add the servo values to the averaging
|
|
heli_servo_out[0] += g.heli_servo_1.radio_out;
|
|
heli_servo_out[1] += g.heli_servo_2.radio_out;
|
|
heli_servo_out[2] += g.heli_servo_3.radio_out;
|
|
heli_servo_out[3] += g.heli_servo_4.radio_out;
|
|
heli_servo_out_count++;
|
|
|
|
// is it time to move the servos?
|
|
if( heli_servo_out_count >= g.heli_servo_averaging ) {
|
|
|
|
// average the values if necessary
|
|
if( g.heli_servo_averaging >= 2 ) {
|
|
heli_servo_out[0] /= g.heli_servo_averaging;
|
|
heli_servo_out[1] /= g.heli_servo_averaging;
|
|
heli_servo_out[2] /= g.heli_servo_averaging;
|
|
heli_servo_out[3] /= g.heli_servo_averaging;
|
|
}
|
|
|
|
// actually move the servos
|
|
APM_RC.OutputCh(CH_1, heli_servo_out[0]);
|
|
APM_RC.OutputCh(CH_2, heli_servo_out[1]);
|
|
APM_RC.OutputCh(CH_3, heli_servo_out[2]);
|
|
APM_RC.OutputCh(CH_4, heli_servo_out[3]);
|
|
|
|
// output gyro value
|
|
if( g.heli_ext_gyro_enabled ) {
|
|
APM_RC.OutputCh(CH_7, g.heli_ext_gyro_gain);
|
|
}
|
|
|
|
#if INSTANT_PWM == 1
|
|
// InstantPWM
|
|
APM_RC.Force_Out0_Out1();
|
|
APM_RC.Force_Out2_Out3();
|
|
#endif
|
|
|
|
// reset the averaging
|
|
heli_servo_out_count = 0;
|
|
heli_servo_out[0] = 0;
|
|
heli_servo_out[1] = 0;
|
|
heli_servo_out[2] = 0;
|
|
heli_servo_out[3] = 0;
|
|
}
|
|
}
|
|
|
|
static void init_motors_out()
|
|
{
|
|
#if INSTANT_PWM == 0
|
|
APM_RC.SetFastOutputChannels( _BV(CH_1) | _BV(CH_2) | _BV(CH_3) | _BV(CH_4) );
|
|
#endif
|
|
}
|
|
|
|
static void motors_output_enable()
|
|
{
|
|
APM_RC.enable_out(CH_1);
|
|
APM_RC.enable_out(CH_2);
|
|
APM_RC.enable_out(CH_3);
|
|
APM_RC.enable_out(CH_4);
|
|
APM_RC.enable_out(CH_5);
|
|
APM_RC.enable_out(CH_6);
|
|
APM_RC.enable_out(CH_7);
|
|
APM_RC.enable_out(CH_8);
|
|
}
|
|
|
|
// these are not really motors, they're servos but we don't rename the function because it fits with the rest of the code better
|
|
static void output_motors_armed()
|
|
{
|
|
// if manual override (i.e. when setting up swash), pass pilot commands straight through to swash
|
|
if( g.heli_servo_manual == 1 ) {
|
|
g.rc_1.servo_out = g.rc_1.control_in;
|
|
g.rc_2.servo_out = g.rc_2.control_in;
|
|
g.rc_3.servo_out = g.rc_3.control_in;
|
|
g.rc_4.servo_out = g.rc_4.control_in;
|
|
}
|
|
|
|
//static int counter = 0;
|
|
g.rc_1.calc_pwm();
|
|
g.rc_2.calc_pwm();
|
|
g.rc_3.calc_pwm();
|
|
g.rc_4.calc_pwm();
|
|
|
|
heli_move_swash( g.rc_1.servo_out, g.rc_2.servo_out, g.rc_3.servo_out, g.rc_4.servo_out );
|
|
}
|
|
|
|
// for helis - armed or disarmed we allow servos to move
|
|
static void output_motors_disarmed()
|
|
{
|
|
if(g.rc_3.control_in > 0){
|
|
// we have pushed up the throttle, remove safety
|
|
motor_auto_armed = true;
|
|
}
|
|
|
|
output_motors_armed();
|
|
}
|
|
|
|
static void output_motor_test()
|
|
{
|
|
}
|
|
|
|
// heli_angle_boost - adds a boost depending on roll/pitch values
|
|
// equivalent of quad's angle_boost function
|
|
// throttle value should be 0 ~ 1000
|
|
static int16_t heli_get_angle_boost(int throttle)
|
|
{
|
|
float angle_boost_factor = cos_pitch_x * cos_roll_x;
|
|
angle_boost_factor = 1.0 - constrain(angle_boost_factor, .5, 1.0);
|
|
int throttle_above_mid = max(throttle - heli_throttle_mid,0);
|
|
return throttle + throttle_above_mid*angle_boost_factor;
|
|
|
|
}
|
|
|
|
#endif // HELI_FRAME
|