ardupilot/ArduPlane/system.cpp

512 lines
16 KiB
C++

#include "Plane.h"
/*****************************************************************************
* The init_ardupilot function processes everything we need for an in - air restart
* We will determine later if we are actually on the ground and process a
* ground start in that case.
*
*****************************************************************************/
static void failsafe_check_static()
{
plane.failsafe_check();
}
void Plane::init_ardupilot()
{
#if STATS_ENABLED == ENABLED
// initialise stats module
g2.stats.init();
#endif
#if HIL_SUPPORT
if (g.hil_mode == 1) {
// set sensors to HIL mode
ins.set_hil_mode();
compass.set_hil_mode();
barometer.set_hil_mode();
}
#endif
ins.set_log_raw_bit(MASK_LOG_IMU_RAW);
// setup any board specific drivers
BoardConfig.init();
#if HAL_MAX_CAN_PROTOCOL_DRIVERS
can_mgr.init();
#endif
// initialise rc channels including setting mode
rc().init();
relay.init();
// initialise notify system
notify.init();
notify_mode(*control_mode);
init_rc_out_main();
// keep a record of how many resets have happened. This can be
// used to detect in-flight resets
g.num_resets.set_and_save(g.num_resets+1);
// init baro
barometer.init();
// initialise rangefinder
rangefinder.set_log_rfnd_bit(MASK_LOG_SONAR);
rangefinder.init(ROTATION_PITCH_270);
// initialise battery monitoring
battery.init();
rssi.init();
rpm_sensor.init();
// setup telem slots with serial ports
gcs().setup_uarts();
#if OSD_ENABLED == ENABLED
osd.init();
#endif
#if LOGGING_ENABLED == ENABLED
log_init();
#endif
// initialise airspeed sensor
airspeed.init();
AP::compass().set_log_bit(MASK_LOG_COMPASS);
AP::compass().init();
#if OPTFLOW == ENABLED
// make optflow available to libraries
if (optflow.enabled()) {
ahrs.set_optflow(&optflow);
}
#endif
// init EFI monitoring
#if EFI_ENABLED
g2.efi.init();
#endif
// GPS Initialization
gps.set_log_gps_bit(MASK_LOG_GPS);
gps.init(serial_manager);
init_rc_in(); // sets up rc channels from radio
#if HAL_MOUNT_ENABLED
// initialise camera mount
camera_mount.init();
#endif
#if LANDING_GEAR_ENABLED == ENABLED
// initialise landing gear position
g2.landing_gear.init();
#endif
#if FENCE_TRIGGERED_PIN > 0
hal.gpio->pinMode(FENCE_TRIGGERED_PIN, HAL_GPIO_OUTPUT);
hal.gpio->write(FENCE_TRIGGERED_PIN, 0);
#endif
/*
* setup the 'main loop is dead' check. Note that this relies on
* the RC library being initialised.
*/
hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000);
quadplane.setup();
AP_Param::reload_defaults_file(true);
startup_ground();
// don't initialise aux rc output until after quadplane is setup as
// that can change initial values of channels
init_rc_out_aux();
// choose the nav controller
set_nav_controller();
set_mode_by_number((enum Mode::Number)g.initial_mode.get(), ModeReason::INITIALISED);
// set the correct flight mode
// ---------------------------
reset_control_switch();
// initialise sensor
#if OPTFLOW == ENABLED
if (optflow.enabled()) {
optflow.init(-1);
}
#endif
// init cargo gripper
#if GRIPPER_ENABLED == ENABLED
g2.gripper.init();
#endif
// init fence
#if AC_FENCE == ENABLED
fence.init();
#endif
}
//********************************************************************************
//This function does all the calibrations, etc. that we need during a ground start
//********************************************************************************
void Plane::startup_ground(void)
{
set_mode(mode_initializing, ModeReason::INITIALISED);
#if (GROUND_START_DELAY > 0)
gcs().send_text(MAV_SEVERITY_NOTICE,"Ground start with delay");
delay(GROUND_START_DELAY * 1000);
#else
gcs().send_text(MAV_SEVERITY_INFO,"Ground start");
#endif
//INS ground start
//------------------------
//
startup_INS_ground();
// Save the settings for in-air restart
// ------------------------------------
//save_EEPROM_groundstart();
// initialise mission library
mission.init();
// initialise AP_Logger library
#if LOGGING_ENABLED == ENABLED
logger.setVehicle_Startup_Writer(
FUNCTOR_BIND(&plane, &Plane::Log_Write_Vehicle_Startup_Messages, void)
);
#endif
#ifdef ENABLE_SCRIPTING
g2.scripting.init();
#endif // ENABLE_SCRIPTING
// reset last heartbeat time, so we don't trigger failsafe on slow
// startup
failsafe.last_heartbeat_ms = millis();
// we don't want writes to the serial port to cause us to pause
// mid-flight, so set the serial ports non-blocking once we are
// ready to fly
serial_manager.set_blocking_writes_all(false);
}
bool Plane::set_mode(Mode &new_mode, const ModeReason reason)
{
if (control_mode == &new_mode) {
// don't switch modes if we are already in the correct mode.
return true;
}
#if !QAUTOTUNE_ENABLED
if (&new_mode == &plane.mode_qautotune) {
gcs().send_text(MAV_SEVERITY_INFO,"QAUTOTUNE disabled");
set_mode(plane.mode_qhover, ModeReason::UNAVAILABLE);
return false;
}
#endif
// backup current control_mode and previous_mode
Mode &old_previous_mode = *previous_mode;
Mode &old_mode = *control_mode;
// update control_mode assuming success
// TODO: move these to be after enter() once start_command_callback() no longer checks control_mode
previous_mode = control_mode;
control_mode = &new_mode;
const ModeReason previous_mode_reason = control_mode_reason;
control_mode_reason = reason;
// attempt to enter new mode
if (!new_mode.enter()) {
// Log error that we failed to enter desired flight mode
gcs().send_text(MAV_SEVERITY_WARNING, "Flight mode change failed");
// we failed entering new mode, roll back to old
previous_mode = &old_previous_mode;
control_mode = &old_mode;
control_mode_reason = previous_mode_reason;
// currently, only Q modes can fail enter(). This will likely change in the future and all modes
// should be changed to check dependencies and fail early before depending on changes in Mode::set_mode()
if (control_mode->is_vtol_mode()) {
// ignore result because if we fail we risk looping at the qautotune check above
control_mode->enter();
}
return false;
}
if (previous_mode == &mode_autotune) {
// restore last gains
autotune_restore();
}
// exit previous mode
old_mode.exit();
// record reasons
control_mode_reason = reason;
// log and notify mode change
logger.Write_Mode(control_mode->mode_number(), control_mode_reason);
notify_mode(*control_mode);
gcs().send_message(MSG_HEARTBEAT);
return true;
}
bool Plane::set_mode(const uint8_t new_mode, const ModeReason reason)
{
static_assert(sizeof(Mode::Number) == sizeof(new_mode), "The new mode can't be mapped to the vehicles mode number");
Mode *mode = plane.mode_from_mode_num(static_cast<Mode::Number>(new_mode));
if (mode == nullptr) {
gcs().send_text(MAV_SEVERITY_INFO, "Error: invalid mode number: %u", (unsigned)new_mode);
return false;
}
return set_mode(*mode, reason);
}
bool Plane::set_mode_by_number(const Mode::Number new_mode_number, const ModeReason reason)
{
Mode *new_mode = plane.mode_from_mode_num(new_mode_number);
if (new_mode == nullptr) {
gcs().send_text(MAV_SEVERITY_INFO, "Error: invalid mode number: %d", new_mode_number);
return false;
}
return set_mode(*new_mode, reason);
}
void Plane::check_long_failsafe()
{
uint32_t tnow = millis();
// only act on changes
// -------------------
if (failsafe.state != FAILSAFE_LONG && failsafe.state != FAILSAFE_GCS && flight_stage != AP_Vehicle::FixedWing::FLIGHT_LAND) {
uint32_t radio_timeout_ms = failsafe.last_valid_rc_ms;
if (failsafe.state == FAILSAFE_SHORT) {
// time is relative to when short failsafe enabled
radio_timeout_ms = failsafe.short_timer_ms;
}
if (failsafe.rc_failsafe &&
(tnow - radio_timeout_ms) > g.fs_timeout_long*1000) {
failsafe_long_on_event(FAILSAFE_LONG, ModeReason::RADIO_FAILSAFE);
} else if (g.gcs_heartbeat_fs_enabled == GCS_FAILSAFE_HB_AUTO && control_mode == &mode_auto &&
failsafe.last_heartbeat_ms != 0 &&
(tnow - failsafe.last_heartbeat_ms) > g.fs_timeout_long*1000) {
failsafe_long_on_event(FAILSAFE_GCS, ModeReason::GCS_FAILSAFE);
} else if ((g.gcs_heartbeat_fs_enabled == GCS_FAILSAFE_HEARTBEAT ||
g.gcs_heartbeat_fs_enabled == GCS_FAILSAFE_HB_RSSI) &&
failsafe.last_heartbeat_ms != 0 &&
(tnow - failsafe.last_heartbeat_ms) > g.fs_timeout_long*1000) {
failsafe_long_on_event(FAILSAFE_GCS, ModeReason::GCS_FAILSAFE);
} else if (g.gcs_heartbeat_fs_enabled == GCS_FAILSAFE_HB_RSSI &&
gcs().chan(0) != nullptr &&
gcs().chan(0)->last_radio_status_remrssi_ms() != 0 &&
(tnow - gcs().chan(0)->last_radio_status_remrssi_ms()) > g.fs_timeout_long*1000) {
failsafe_long_on_event(FAILSAFE_GCS, ModeReason::GCS_FAILSAFE);
}
} else {
uint32_t timeout_seconds = g.fs_timeout_long;
if (g.fs_action_short != FS_ACTION_SHORT_DISABLED) {
// avoid dropping back into short timeout
timeout_seconds = g.fs_timeout_short;
}
// We do not change state but allow for user to change mode
if (failsafe.state == FAILSAFE_GCS &&
(tnow - failsafe.last_heartbeat_ms) < timeout_seconds*1000) {
failsafe_long_off_event(ModeReason::GCS_FAILSAFE);
} else if (failsafe.state == FAILSAFE_LONG &&
!failsafe.rc_failsafe) {
failsafe_long_off_event(ModeReason::RADIO_FAILSAFE);
}
}
}
void Plane::check_short_failsafe()
{
// only act on changes
// -------------------
if (g.fs_action_short != FS_ACTION_SHORT_DISABLED &&
failsafe.state == FAILSAFE_NONE &&
flight_stage != AP_Vehicle::FixedWing::FLIGHT_LAND) {
// The condition is checked and the flag rc_failsafe is set in radio.cpp
if(failsafe.rc_failsafe) {
failsafe_short_on_event(FAILSAFE_SHORT, ModeReason::RADIO_FAILSAFE);
}
}
if(failsafe.state == FAILSAFE_SHORT) {
if(!failsafe.rc_failsafe || g.fs_action_short == FS_ACTION_SHORT_DISABLED) {
failsafe_short_off_event(ModeReason::RADIO_FAILSAFE);
}
}
}
void Plane::startup_INS_ground(void)
{
#if HIL_SUPPORT
if (g.hil_mode == 1) {
while (barometer.get_last_update() == 0) {
// the barometer begins updating when we get the first
// HIL_STATE message
gcs().send_text(MAV_SEVERITY_WARNING, "Waiting for first HIL_STATE message");
hal.scheduler->delay(1000);
}
}
#endif
if (ins.gyro_calibration_timing() != AP_InertialSensor::GYRO_CAL_NEVER) {
gcs().send_text(MAV_SEVERITY_ALERT, "Beginning INS calibration. Do not move plane");
} else {
gcs().send_text(MAV_SEVERITY_ALERT, "Skipping INS calibration");
}
ahrs.init();
ahrs.set_fly_forward(true);
ahrs.set_vehicle_class(AHRS_VEHICLE_FIXED_WING);
ahrs.set_wind_estimation(true);
ins.init(scheduler.get_loop_rate_hz());
ahrs.reset();
// read Baro pressure at ground
//-----------------------------
barometer.set_log_baro_bit(MASK_LOG_IMU);
barometer.calibrate();
if (airspeed.enabled()) {
// initialize airspeed sensor
// --------------------------
airspeed.calibrate(true);
} else {
gcs().send_text(MAV_SEVERITY_WARNING,"No airspeed sensor present");
}
}
// sets notify object flight mode information
void Plane::notify_mode(const Mode& mode)
{
notify.flags.flight_mode = mode.mode_number();
notify.set_flight_mode_str(mode.name4());
}
/*
should we log a message type now?
*/
bool Plane::should_log(uint32_t mask)
{
#if LOGGING_ENABLED == ENABLED
return logger.should_log(mask);
#else
return false;
#endif
}
/*
return throttle percentage from 0 to 100 for normal use and -100 to 100 when using reverse thrust
*/
int8_t Plane::throttle_percentage(void)
{
if (quadplane.in_vtol_mode() && !quadplane.in_tailsitter_vtol_transition()) {
return quadplane.throttle_percentage();
}
float throttle = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle);
if (!have_reverse_thrust()) {
return constrain_int16(throttle, 0, 100);
}
return constrain_int16(throttle, -100, 100);
}
// update the harmonic notch filter center frequency dynamically
void Plane::update_dynamic_notch()
{
if (!ins.gyro_harmonic_notch_enabled()) {
return;
}
const float ref_freq = ins.get_gyro_harmonic_notch_center_freq_hz();
const float ref = ins.get_gyro_harmonic_notch_reference();
if (is_zero(ref)) {
ins.update_harmonic_notch_freq_hz(ref_freq);
return;
}
switch (ins.get_gyro_harmonic_notch_tracking_mode()) {
case HarmonicNotchDynamicMode::UpdateThrottle: // throttle based tracking
// set the harmonic notch filter frequency approximately scaled on motor rpm implied by throttle
if (quadplane.available()) {
ins.update_harmonic_notch_freq_hz(ref_freq * MAX(1.0f, sqrtf(quadplane.motors->get_throttle_out() / ref)));
}
break;
case HarmonicNotchDynamicMode::UpdateRPM: // rpm sensor based tracking
float rpm;
if (rpm_sensor.get_rpm(0, rpm)) {
// set the harmonic notch filter frequency from the main rotor rpm
ins.update_harmonic_notch_freq_hz(MAX(ref_freq, rpm * ref / 60.0f));
} else {
ins.update_harmonic_notch_freq_hz(ref_freq);
}
break;
#ifdef HAVE_AP_BLHELI_SUPPORT
case HarmonicNotchDynamicMode::UpdateBLHeli: // BLHeli based tracking
// set the harmonic notch filter frequency scaled on measured frequency
if (ins.has_harmonic_option(HarmonicNotchFilterParams::Options::DynamicHarmonic)) {
float notches[INS_MAX_NOTCHES];
const uint8_t num_notches = AP_BLHeli::get_singleton()->get_motor_frequencies_hz(INS_MAX_NOTCHES, notches);
for (uint8_t i = 0; i < num_notches; i++) {
notches[i] = MAX(ref_freq, notches[i]);
}
if (num_notches > 0) {
ins.update_harmonic_notch_frequencies_hz(num_notches, notches);
} else if (quadplane.available()) { // throttle fallback
ins.update_harmonic_notch_freq_hz(ref_freq * MAX(1.0f, sqrtf(quadplane.motors->get_throttle_out() / ref)));
} else {
ins.update_harmonic_notch_freq_hz(ref_freq);
}
} else {
ins.update_harmonic_notch_freq_hz(MAX(ref_freq, AP_BLHeli::get_singleton()->get_average_motor_frequency_hz() * ref));
}
break;
#endif
#if HAL_GYROFFT_ENABLED
case HarmonicNotchDynamicMode::UpdateGyroFFT: // FFT based tracking
// set the harmonic notch filter frequency scaled on measured frequency
if (ins.has_harmonic_option(HarmonicNotchFilterParams::Options::DynamicHarmonic)) {
float notches[INS_MAX_NOTCHES];
const uint8_t peaks = gyro_fft.get_weighted_noise_center_frequencies_hz(INS_MAX_NOTCHES, notches);
ins.update_harmonic_notch_frequencies_hz(peaks, notches);
} else {
ins.update_harmonic_notch_freq_hz(gyro_fft.get_weighted_noise_center_freq_hz());
}
break;
#endif
case HarmonicNotchDynamicMode::Fixed: // static
default:
ins.update_harmonic_notch_freq_hz(ref_freq);
break;
}
}