ardupilot/ArduCopterMega/sensors.pde
tridge60@gmail.com df6a1b51f3 make a lot more functions and variables static
this saves about 1k of code space through better compiler optimisation

git-svn-id: https://arducopter.googlecode.com/svn/trunk@2889 f9c3cf11-9bcb-44bc-f272-b75c42450872
2011-07-17 10:32:00 +00:00

113 lines
3.0 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
// Sensors are not available in HIL_MODE_ATTITUDE
#if HIL_MODE != HIL_MODE_ATTITUDE
static void ReadSCP1000(void) {}
static void init_barometer(void)
{
#if HIL_MODE == HIL_MODE_SENSORS
hil.update(); // look for inbound hil packets for initialization
#endif
// We take some readings...
for(int i = 0; i < 200; i++){
delay(25);
#if HIL_MODE == HIL_MODE_SENSORS
hil.update(); // look for inbound hil packets
#endif
// Get initial data from absolute pressure sensor
ground_pressure = read_baro_filtered();
ground_temperature = (ground_temperature * 9 + barometer.Temp) / 10;
}
abs_pressure = ground_pressure;
ground_temperature = barometer.Temp;
//Serial.printf("abs_pressure %ld\n", ground_temperature);
//SendDebugln("barometer calibration complete.");
}
static long read_baro_filtered(void)
{
long pressure = 0;
// get new data from absolute pressure sensor
barometer.Read();
// add new data into our filter
baro_filter[baro_filter_index] = barometer.Press;
baro_filter_index++;
// loop our filter
if(baro_filter_index == BARO_FILTER_SIZE)
baro_filter_index = 0;
// zero out our accumulator
// sum our filter
for(byte i = 0; i < BARO_FILTER_SIZE; i++){
pressure += baro_filter[i];
}
// average our sampels
return pressure /= BARO_FILTER_SIZE;
}
static long read_barometer(void)
{
float x, scaling, temp;
abs_pressure = read_baro_filtered();
//Serial.printf("%ld, %ld, %ld, %ld\n", barometer.RawTemp, barometer.RawPress, barometer.Press, abs_pressure);
scaling = (float)ground_pressure / (float)abs_pressure;
temp = ((float)ground_temperature / 10.0f) + 273.15f;
x = log(scaling) * temp * 29271.267f;
return (x / 10);
}
// in M/S * 100
static void read_airspeed(void)
{
}
static void zero_airspeed(void)
{
}
#endif // HIL_MODE != HIL_MODE_ATTITUDE
static void read_battery(void)
{
battery_voltage1 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN1)) * .1 + battery_voltage1 * .9;
battery_voltage2 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN2)) * .1 + battery_voltage2 * .9;
battery_voltage3 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN3)) * .1 + battery_voltage3 * .9;
battery_voltage4 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN4)) * .1 + battery_voltage4 * .9;
if(g.battery_monitoring == 1)
battery_voltage = battery_voltage3; // set total battery voltage, for telemetry stream
if(g.battery_monitoring == 2)
battery_voltage = battery_voltage4;
if(g.battery_monitoring == 3 || g.battery_monitoring == 4)
battery_voltage = battery_voltage1;
if(g.battery_monitoring == 4) {
current_amps = CURRENT_AMPS(analogRead(CURRENT_PIN_1)) * .1 + current_amps * .9; //reads power sensor current pin
current_total += current_amps * (float)delta_ms_medium_loop * 0.000278;
}
#if BATTERY_EVENT == 1
if(battery_voltage < LOW_VOLTAGE) low_battery_event();
if(g.battery_monitoring == 4 && current_total > g.pack_capacity) low_battery_event();
#endif
}
//v: 10.9453, a: 17.4023, mah: 8.2