mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-08 08:58:29 -04:00
d6a8440ef2
* These calls were off by one anyway, by using the channel numbers as ints ant not CH_n macros, and that caused an ESC cal problem.
290 lines
8.0 KiB
C++
290 lines
8.0 KiB
C++
/*
|
|
APM_RC_APM2.cpp - Radio Control Library for Ardupilot Mega 2.0. Arduino
|
|
Code by Jordi Muñoz and Jose Julio. DIYDrones.com
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
RC Input : PPM signal on IC4 pin
|
|
RC Output : 11 Servo outputs (standard 20ms frame)
|
|
|
|
Methods:
|
|
Init() : Initialization of interrupts an Timers
|
|
OutpuCh(ch,pwm) : Output value to servos (range : 900-2100us) ch=0..10
|
|
InputCh(ch) : Read a channel input value. ch=0..7
|
|
GetState() : Returns the state of the input. 1 => New radio frame to process
|
|
Automatically resets when we call InputCh to read channels
|
|
|
|
*/
|
|
#include "APM_RC_APM2.h"
|
|
|
|
#include "WProgram.h"
|
|
|
|
#if !defined(__AVR_ATmega1280__) && !defined(__AVR_ATmega2560__)
|
|
# error Please check the Tools/Board menu to ensure you have selected Arduino Mega as your target.
|
|
#else
|
|
|
|
// Variable definition for Input Capture interrupt
|
|
volatile uint16_t APM_RC_APM2::_PWM_RAW[NUM_CHANNELS] = {2400,2400,2400,2400,2400,2400,2400,2400};
|
|
volatile uint8_t APM_RC_APM2::_radio_status=0;
|
|
|
|
/****************************************************
|
|
Input Capture Interrupt ICP5 => PPM signal read
|
|
****************************************************/
|
|
void APM_RC_APM2::_timer5_capt_cb(void)
|
|
{
|
|
static uint16_t prev_icr;
|
|
static uint8_t frame_idx;
|
|
uint16_t icr;
|
|
uint16_t pwidth;
|
|
|
|
icr = ICR5;
|
|
// Calculate pulse width assuming timer overflow TOP = 40000
|
|
if ( icr < prev_icr ) {
|
|
pwidth = ( icr + 40000 ) - prev_icr;
|
|
} else {
|
|
pwidth = icr - prev_icr;
|
|
}
|
|
|
|
// Was it a sync pulse? If so, reset frame.
|
|
if ( pwidth > 8000 ) {
|
|
frame_idx=0;
|
|
} else {
|
|
// Save pulse into _PWM_RAW array.
|
|
if ( frame_idx < NUM_CHANNELS ) {
|
|
_PWM_RAW[ frame_idx++ ] = pwidth;
|
|
// If this is the last pulse in a frame, set _radio_status.
|
|
if (frame_idx >= NUM_CHANNELS) {
|
|
_radio_status = 1;
|
|
}
|
|
}
|
|
}
|
|
// Save icr for next call.
|
|
prev_icr = icr;
|
|
}
|
|
|
|
|
|
// Constructors ////////////////////////////////////////////////////////////////
|
|
|
|
APM_RC_APM2::APM_RC_APM2()
|
|
{
|
|
}
|
|
|
|
// Public Methods //////////////////////////////////////////////////////////////
|
|
void APM_RC_APM2::Init( Arduino_Mega_ISR_Registry * isr_reg )
|
|
{
|
|
// --------------------- TIMER1: OUT1 and OUT2 -----------------------
|
|
pinMode(12,OUTPUT); // OUT1 (PB6/OC1B)
|
|
pinMode(11,OUTPUT); // OUT2 (PB5/OC1A)
|
|
|
|
// WGM: 1 1 1 0. Clear Timer on Compare, TOP is ICR1.
|
|
// COM1A and COM1B enabled, set to low level on match.
|
|
// CS11: prescale by 8 => 0.5us tick
|
|
TCCR1A =((1<<WGM11)|(1<<COM1A1)|(1<<COM1B1));
|
|
TCCR1B = (1<<WGM13)|(1<<WGM12)|(1<<CS11);
|
|
ICR1 = 40000; // 0.5us tick => 50hz freq
|
|
OCR1A = 0xFFFF; // Init OCR registers to nil output signal
|
|
OCR1B = 0xFFFF;
|
|
|
|
// --------------- TIMER4: OUT3, OUT4, and OUT5 ---------------------
|
|
pinMode(8,OUTPUT); // OUT3 (PH5/OC4C)
|
|
pinMode(7,OUTPUT); // OUT4 (PH4/OC4B)
|
|
pinMode(6,OUTPUT); // OUT5 (PH3/OC4A)
|
|
|
|
// WGM: 1 1 1 0. Clear Timer on Compare, TOP is ICR4.
|
|
// COM4A, 4B, 4C enabled, set to low level on match.
|
|
// CS41: prescale by 8 => 0.5us tick
|
|
TCCR4A =((1<<WGM41)|(1<<COM4A1)|(1<<COM4B1)|(1<<COM4C1));
|
|
TCCR4B = (1<<WGM43)|(1<<WGM42)|(1<<CS41);
|
|
OCR4A = 0xFFFF; // Init OCR registers to nil output signal
|
|
OCR4B = 0xFFFF;
|
|
OCR4C = 0xFFFF;
|
|
ICR4 = 40000; // 0.5us tick => 50hz freq
|
|
|
|
//--------------- TIMER3: OUT6, OUT7, and OUT8 ----------------------
|
|
pinMode(3,OUTPUT); // OUT6 (PE5/OC3C)
|
|
pinMode(2,OUTPUT); // OUT7 (PE4/OC3B)
|
|
pinMode(5,OUTPUT); // OUT8 (PE3/OC3A)
|
|
|
|
// WGM: 1 1 1 0. Clear timer on Compare, TOP is ICR3
|
|
// COM3A, 3B, 3C enabled, set to low level on match
|
|
// CS31: prescale by 8 => 0.5us tick
|
|
TCCR3A =((1<<WGM31)|(1<<COM3A1)|(1<<COM3B1)|(1<<COM3C1));
|
|
TCCR3B = (1<<WGM33)|(1<<WGM32)|(1<<CS31);
|
|
OCR3A = 0xFFFF; // Init OCR registers to nil output signal
|
|
OCR3B = 0xFFFF;
|
|
OCR3C = 0xFFFF;
|
|
ICR3 = 40000; // 0.5us tick => 50hz freq
|
|
|
|
//--------------- TIMER5: PPM INPUT ---------------------------------
|
|
// Init PPM input on Timer 5
|
|
pinMode(48, INPUT); // PPM Input (PL1/ICP5)
|
|
|
|
// WGM: 1 1 1 1. Fast PWM, TOP is OCR5A
|
|
// COM all disabled.
|
|
// CS51: prescale by 8 => 0.5us tick
|
|
// ICES5: Input Capture on rising edge
|
|
TCCR5A =((1<<WGM50)|(1<<WGM51));
|
|
// Input Capture rising edge
|
|
TCCR5B = ((1<<WGM53)|(1<<WGM52)|(1<<CS51)|(1<<ICES5));
|
|
OCR5A = 40000; // 0.5us tick => 50hz freq. The input capture routine
|
|
// assumes this 40000 for TOP.
|
|
|
|
isr_reg->register_signal( ISR_REGISTRY_TIMER5_CAPT, _timer5_capt_cb );
|
|
// Enable Input Capture interrupt
|
|
TIMSK5 |= (1<<ICIE5);
|
|
}
|
|
|
|
void APM_RC_APM2::OutputCh(unsigned char ch, uint16_t pwm)
|
|
{
|
|
pwm=constrain(pwm,MIN_PULSEWIDTH,MAX_PULSEWIDTH);
|
|
pwm<<=1; // pwm*2;
|
|
|
|
switch(ch)
|
|
{
|
|
case 0: OCR1B=pwm; break; // out1
|
|
case 1: OCR1A=pwm; break; // out2
|
|
case 2: OCR4C=pwm; break; // out3
|
|
case 3: OCR4B=pwm; break; // out4
|
|
case 4: OCR4A=pwm; break; // out5
|
|
case 5: OCR3C=pwm; break; // out6
|
|
case 6: OCR3B=pwm; break; // out7
|
|
case 7: OCR3A=pwm; break; // out8
|
|
}
|
|
}
|
|
|
|
uint16_t APM_RC_APM2::InputCh(unsigned char ch)
|
|
{
|
|
uint16_t result;
|
|
uint16_t result2;
|
|
|
|
if (_HIL_override[ch] != 0) {
|
|
return _HIL_override[ch];
|
|
}
|
|
|
|
// Because servo pulse variables are 16 bits and the interrupts are running values could be corrupted.
|
|
// We dont want to stop interrupts to read radio channels so we have to do two readings to be sure that the value is correct...
|
|
result = _PWM_RAW[ch]>>1; // Because timer runs at 0.5us we need to do value/2
|
|
result2 = _PWM_RAW[ch]>>1;
|
|
if (result != result2)
|
|
result = _PWM_RAW[ch]>>1; // if the results are different we make a third reading (this should be fine)
|
|
|
|
// Limit values to a valid range
|
|
result = constrain(result,MIN_PULSEWIDTH,MAX_PULSEWIDTH);
|
|
_radio_status=0; // Radio channel read
|
|
return(result);
|
|
}
|
|
|
|
unsigned char APM_RC_APM2::GetState(void)
|
|
{
|
|
return(_radio_status);
|
|
}
|
|
|
|
// InstantPWM is not implemented!
|
|
|
|
void APM_RC_APM2::Force_Out(void) { }
|
|
void APM_RC_APM2::Force_Out0_Out1(void) { }
|
|
void APM_RC_APM2::Force_Out2_Out3(void) { }
|
|
void APM_RC_APM2::Force_Out6_Out7(void) { }
|
|
|
|
/* ---------------- OUTPUT SPEED CONTROL ------------------ */
|
|
// Output rate options:
|
|
#define OUTPUT_SPEED_50HZ 0
|
|
#define OUTPUT_SPEED_200HZ 1
|
|
#define OUTPUT_SPEED_400HZ 2
|
|
|
|
void APM_RC_APM2::SetFastOutputChannels(uint32_t chmask)
|
|
{
|
|
if ((chmask & ( MSK_CH_1 | MSK_CH_2 )) != 0)
|
|
_set_speed_ch1_ch2(OUTPUT_SPEED_400HZ);
|
|
|
|
if ((chmask & ( MSK_CH_3 | MSK_CH_4 | MSK_CH_5 )) != 0)
|
|
_set_speed_ch3_ch4_ch5(OUTPUT_SPEED_400HZ);
|
|
|
|
if ((chmask & ( MSK_CH_6 | MSK_CH_7 | MSK_CH_8 )) != 0)
|
|
_set_speed_ch6_ch7_ch8(OUTPUT_SPEED_400HZ);
|
|
}
|
|
|
|
void APM_RC_APM2::_set_speed_ch1_ch2(uint8_t speed)
|
|
{
|
|
switch(speed) {
|
|
case OUTPUT_SPEED_400HZ:
|
|
ICR1 = 5000;
|
|
break;
|
|
case OUTPUT_SPEED_200HZ:
|
|
ICR1 = 10000;
|
|
break;
|
|
case OUTPUT_SPEED_50HZ:
|
|
default:
|
|
ICR1 = 40000;
|
|
break;
|
|
}
|
|
}
|
|
|
|
void APM_RC_APM2::_set_speed_ch3_ch4_ch5(uint8_t speed)
|
|
{
|
|
switch(speed) {
|
|
case OUTPUT_SPEED_400HZ:
|
|
ICR4 = 5000;
|
|
break;
|
|
case OUTPUT_SPEED_200HZ:
|
|
ICR4 = 10000;
|
|
break;
|
|
case OUTPUT_SPEED_50HZ:
|
|
default:
|
|
ICR4 = 40000;
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
void APM_RC_APM2::_set_speed_ch6_ch7_ch8(uint8_t speed)
|
|
{
|
|
switch(speed) {
|
|
case OUTPUT_SPEED_400HZ:
|
|
ICR3 = 5000;
|
|
break;
|
|
case OUTPUT_SPEED_200HZ:
|
|
ICR3 = 10000;
|
|
break;
|
|
case OUTPUT_SPEED_50HZ:
|
|
default:
|
|
ICR3 = 40000;
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
// allow HIL override of RC values
|
|
// A value of -1 means no change
|
|
// A value of 0 means no override, use the real RC values
|
|
bool APM_RC_APM2::setHIL(int16_t v[NUM_CHANNELS])
|
|
{
|
|
uint8_t sum = 0;
|
|
for (unsigned char i=0; i<NUM_CHANNELS; i++) {
|
|
if (v[i] != -1) {
|
|
_HIL_override[i] = v[i];
|
|
}
|
|
if (_HIL_override[i] != 0) {
|
|
sum++;
|
|
}
|
|
}
|
|
if (sum == 0) {
|
|
return 0;
|
|
} else {
|
|
return 1;
|
|
}
|
|
_radio_status = 1;
|
|
}
|
|
|
|
void APM_RC_APM2::clearOverride(void)
|
|
{
|
|
for (unsigned char i=0; i<NUM_CHANNELS; i++) {
|
|
_HIL_override[i] = 0;
|
|
}
|
|
}
|
|
|
|
#endif
|