ardupilot/libraries/AP_RCProtocol/AP_RCProtocol.cpp
2020-08-24 16:32:35 +10:00

405 lines
12 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Code by Andrew Tridgell and Siddharth Bharat Purohit
*/
#include <AP_Vehicle/AP_Vehicle_Type.h>
#include "AP_RCProtocol.h"
#include "AP_RCProtocol_PPMSum.h"
#include "AP_RCProtocol_DSM.h"
#include "AP_RCProtocol_IBUS.h"
#include "AP_RCProtocol_SBUS.h"
#include "AP_RCProtocol_SUMD.h"
#include "AP_RCProtocol_SRXL.h"
#if !APM_BUILD_TYPE(APM_BUILD_iofirmware)
#include "AP_RCProtocol_SRXL2.h"
#endif
#include "AP_RCProtocol_CRSF.h"
#include "AP_RCProtocol_ST24.h"
#include "AP_RCProtocol_FPort.h"
#include <AP_Math/AP_Math.h>
#include <RC_Channel/RC_Channel.h>
extern const AP_HAL::HAL& hal;
void AP_RCProtocol::init()
{
backend[AP_RCProtocol::PPM] = new AP_RCProtocol_PPMSum(*this);
backend[AP_RCProtocol::IBUS] = new AP_RCProtocol_IBUS(*this);
backend[AP_RCProtocol::SBUS] = new AP_RCProtocol_SBUS(*this, true);
backend[AP_RCProtocol::SBUS_NI] = new AP_RCProtocol_SBUS(*this, false);
backend[AP_RCProtocol::DSM] = new AP_RCProtocol_DSM(*this);
backend[AP_RCProtocol::SUMD] = new AP_RCProtocol_SUMD(*this);
backend[AP_RCProtocol::SRXL] = new AP_RCProtocol_SRXL(*this);
#if !APM_BUILD_TYPE(APM_BUILD_iofirmware)
backend[AP_RCProtocol::SRXL2] = new AP_RCProtocol_SRXL2(*this);
backend[AP_RCProtocol::CRSF] = new AP_RCProtocol_CRSF(*this);
#endif
backend[AP_RCProtocol::ST24] = new AP_RCProtocol_ST24(*this);
backend[AP_RCProtocol::FPORT] = new AP_RCProtocol_FPort(*this, true);
}
AP_RCProtocol::~AP_RCProtocol()
{
for (uint8_t i = 0; i < AP_RCProtocol::NONE; i++) {
if (backend[i] != nullptr) {
delete backend[i];
backend[i] = nullptr;
}
}
}
void AP_RCProtocol::process_pulse(uint32_t width_s0, uint32_t width_s1)
{
uint32_t now = AP_HAL::millis();
bool searching = (now - _last_input_ms >= 200);
#ifndef IOMCU_FW
rc_protocols_mask = rc().enabled_protocols();
#endif
if (_detected_protocol != AP_RCProtocol::NONE &&
!protocol_enabled(_detected_protocol)) {
_detected_protocol = AP_RCProtocol::NONE;
}
if (_detected_protocol != AP_RCProtocol::NONE && _detected_with_bytes && !searching) {
// we're using byte inputs, discard pulses
return;
}
// first try current protocol
if (_detected_protocol != AP_RCProtocol::NONE && !searching) {
backend[_detected_protocol]->process_pulse(width_s0, width_s1);
if (backend[_detected_protocol]->new_input()) {
_new_input = true;
_last_input_ms = now;
}
return;
}
// otherwise scan all protocols
for (uint8_t i = 0; i < AP_RCProtocol::NONE; i++) {
if (_disabled_for_pulses & (1U << i)) {
// this protocol is disabled for pulse input
continue;
}
if (backend[i] != nullptr) {
if (!protocol_enabled(rcprotocol_t(i))) {
continue;
}
uint32_t frame_count = backend[i]->get_rc_frame_count();
uint32_t input_count = backend[i]->get_rc_input_count();
backend[i]->process_pulse(width_s0, width_s1);
if (frame_count != backend[i]->get_rc_frame_count()) {
_good_frames[i]++;
if (requires_3_frames((rcprotocol_t)i) && _good_frames[i] < 3) {
continue;
}
_new_input = (input_count != backend[i]->get_rc_input_count());
_detected_protocol = (enum AP_RCProtocol::rcprotocol_t)i;
memset(_good_frames, 0, sizeof(_good_frames));
_last_input_ms = now;
_detected_with_bytes = false;
break;
}
}
}
}
/*
process an array of pulses. n must be even
*/
void AP_RCProtocol::process_pulse_list(const uint32_t *widths, uint16_t n, bool need_swap)
{
if (n & 1) {
return;
}
while (n) {
uint32_t widths0 = widths[0];
uint32_t widths1 = widths[1];
if (need_swap) {
uint32_t tmp = widths1;
widths1 = widths0;
widths0 = tmp;
}
widths1 -= widths0;
process_pulse(widths0, widths1);
widths += 2;
n -= 2;
}
}
bool AP_RCProtocol::process_byte(uint8_t byte, uint32_t baudrate)
{
uint32_t now = AP_HAL::millis();
bool searching = (now - _last_input_ms >= 200);
#ifndef IOMCU_FW
rc_protocols_mask = rc().enabled_protocols();
#endif
if (_detected_protocol != AP_RCProtocol::NONE &&
!protocol_enabled(_detected_protocol)) {
_detected_protocol = AP_RCProtocol::NONE;
}
if (_detected_protocol != AP_RCProtocol::NONE && !_detected_with_bytes && !searching) {
// we're using pulse inputs, discard bytes
return false;
}
// first try current protocol
if (_detected_protocol != AP_RCProtocol::NONE && !searching) {
backend[_detected_protocol]->process_byte(byte, baudrate);
if (backend[_detected_protocol]->new_input()) {
_new_input = true;
_last_input_ms = now;
}
return true;
}
// otherwise scan all protocols
for (uint8_t i = 0; i < AP_RCProtocol::NONE; i++) {
if (backend[i] != nullptr) {
if (!protocol_enabled(rcprotocol_t(i))) {
continue;
}
uint32_t frame_count = backend[i]->get_rc_frame_count();
uint32_t input_count = backend[i]->get_rc_input_count();
backend[i]->process_byte(byte, baudrate);
if (frame_count != backend[i]->get_rc_frame_count()) {
_good_frames[i]++;
if (requires_3_frames((rcprotocol_t)i) && _good_frames[i] < 3) {
continue;
}
_new_input = (input_count != backend[i]->get_rc_input_count());
_detected_protocol = (enum AP_RCProtocol::rcprotocol_t)i;
memset(_good_frames, 0, sizeof(_good_frames));
_last_input_ms = now;
_detected_with_bytes = true;
// stop decoding pulses to save CPU
hal.rcin->pulse_input_enable(false);
break;
}
}
}
return false;
}
/*
check for bytes from an additional uart. This is used to support RC
protocols from SERIALn_PROTOCOL
*/
void AP_RCProtocol::check_added_uart(void)
{
if (!added.uart) {
return;
}
uint32_t now = AP_HAL::millis();
bool searching = (now - _last_input_ms >= 200);
if (!searching && !_detected_with_bytes) {
// not using this uart
return;
}
if (!added.opened) {
added.opened = true;
switch (added.phase) {
case CONFIG_115200_8N1:
added.baudrate = 115200;
added.uart->configure_parity(0);
added.uart->set_stop_bits(1);
added.uart->set_options(added.uart->get_options() & ~AP_HAL::UARTDriver::OPTION_RXINV);
break;
case CONFIG_115200_8N1I:
added.baudrate = 115200;
added.uart->configure_parity(0);
added.uart->set_stop_bits(1);
added.uart->set_options(added.uart->get_options() | AP_HAL::UARTDriver::OPTION_RXINV);
break;
case CONFIG_100000_8E2I:
// assume SBUS settings, even parity, 2 stop bits
added.baudrate = 100000;
added.uart->configure_parity(2);
added.uart->set_stop_bits(2);
added.uart->set_options(added.uart->get_options() | AP_HAL::UARTDriver::OPTION_RXINV);
break;
case CONFIG_420000_8N1:
added.baudrate = CRSF_BAUDRATE;
added.uart->configure_parity(0);
added.uart->set_stop_bits(1);
added.uart->set_flow_control(AP_HAL::UARTDriver::FLOW_CONTROL_DISABLE);
added.uart->set_unbuffered_writes(true);
added.uart->set_blocking_writes(false);
added.uart->set_options(added.uart->get_options() & ~AP_HAL::UARTDriver::OPTION_RXINV);
break;
}
added.uart->begin(added.baudrate, 128, 128);
added.last_baud_change_ms = AP_HAL::millis();
}
uint32_t n = added.uart->available();
n = MIN(n, 255U);
for (uint8_t i=0; i<n; i++) {
int16_t b = added.uart->read();
if (b >= 0) {
process_byte(uint8_t(b), added.baudrate);
}
}
if (!_detected_with_bytes) {
if (now - added.last_baud_change_ms > 1000) {
// flip baudrates if not detected once a second
added.phase = (enum config_phase)(uint8_t(added.phase) + 1);
if (added.phase > CONFIG_420000_8N1) {
added.phase = (enum config_phase)0;
}
added.baudrate = (added.baudrate==100000)?115200:100000;
added.opened = false;
}
}
}
void AP_RCProtocol::update()
{
check_added_uart();
}
bool AP_RCProtocol::new_input()
{
bool ret = _new_input;
_new_input = false;
// if we have an extra UART from a SERIALn_PROTOCOL then check it for data
check_added_uart();
// run update function on backends
for (uint8_t i = 0; i < AP_RCProtocol::NONE; i++) {
if (backend[i] != nullptr) {
backend[i]->update();
}
}
return ret;
}
uint8_t AP_RCProtocol::num_channels()
{
if (_detected_protocol != AP_RCProtocol::NONE) {
return backend[_detected_protocol]->num_channels();
}
return 0;
}
uint16_t AP_RCProtocol::read(uint8_t chan)
{
if (_detected_protocol != AP_RCProtocol::NONE) {
return backend[_detected_protocol]->read(chan);
}
return 0;
}
void AP_RCProtocol::read(uint16_t *pwm, uint8_t n)
{
if (_detected_protocol != AP_RCProtocol::NONE) {
backend[_detected_protocol]->read(pwm, n);
}
}
int16_t AP_RCProtocol::get_RSSI(void) const
{
if (_detected_protocol != AP_RCProtocol::NONE) {
return backend[_detected_protocol]->get_RSSI();
}
return -1;
}
/*
ask for bind start on supported receivers (eg spektrum satellite)
*/
void AP_RCProtocol::start_bind(void)
{
for (uint8_t i = 0; i < AP_RCProtocol::NONE; i++) {
if (backend[i] != nullptr) {
backend[i]->start_bind();
}
}
}
/*
return protocol name
*/
const char *AP_RCProtocol::protocol_name_from_protocol(rcprotocol_t protocol)
{
switch (protocol) {
case PPM:
return "PPM";
case IBUS:
return "IBUS";
case SBUS:
case SBUS_NI:
return "SBUS";
case DSM:
return "DSM";
case SUMD:
return "SUMD";
case SRXL:
return "SRXL";
case SRXL2:
return "SRXL2";
case CRSF:
return "CRSF";
case ST24:
return "ST24";
case FPORT:
return "FPORT";
case NONE:
break;
}
return nullptr;
}
/*
return protocol name
*/
const char *AP_RCProtocol::protocol_name(void) const
{
return protocol_name_from_protocol(_detected_protocol);
}
/*
add a uart to decode
*/
void AP_RCProtocol::add_uart(AP_HAL::UARTDriver* uart)
{
added.uart = uart;
// start with DSM
added.baudrate = 115200U;
}
// return true if a specific protocol is enabled
bool AP_RCProtocol::protocol_enabled(rcprotocol_t protocol) const
{
if ((rc_protocols_mask & 1) != 0) {
// all protocols enabled
return true;
}
return ((1U<<(uint8_t(protocol)+1)) & rc_protocols_mask) != 0;
}
namespace AP {
AP_RCProtocol &RC()
{
static AP_RCProtocol rcprot;
return rcprot;
}
};