mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-05 07:28:29 -04:00
6f200fa923
Further to refactor of RC_Channel class which included adding get_xx set_xx methods, change reads and writes to the public members to calls to get and set functionsss old public member(int16_t) get function -> int16_t set function (int16_t) (expression where c is an object of type RC_Channel) c.radio_in c.get_radio_in() c.set_radio_in(v) c.control_in c.get_control_in() c.set_control_in(v) c.servo_out c.get_servo_out() c.set_servo_out(v) c.pwm_out c.get_pwm_out() // use existing c.radio_out c.get_radio_out() c.set_radio_out(v) c.radio_max c.get_radio_max() c.set_radio_max(v) c.radio_min c.get_radio_min() c.set_radio_min(v) c.radio_trim c.get_radio_trim() c.set_radio_trim(v); c.min_max_configured() // return true if min and max are configured Because data members of RC_Channels are now private and so cannot be written directly some overloads are provided in the Plane classes to provide the old functionality new overload Plane::stick_mix_channel(RC_Channel *channel) which forwards to the previously existing void stick_mix_channel(RC_Channel *channel, int16_t &servo_out); new overload Plane::channel_output_mixer(Rc_Channel* , RC_Channel*)const which forwards to (uint8_t mixing_type, int16_t & chan1, int16_t & chan2)const; Rename functions RC_Channel_aux::set_radio_trim(Aux_servo_function_t function) to RC_Channel_aux::set_trim_to_radio_in_for(Aux_servo_function_t function) RC_Channel_aux::set_servo_out(Aux_servo_function_t function, int16_t value) to RC_Channel_aux::set_servo_out_for(Aux_servo_function_t function, int16_t value) Rationale: RC_Channel is a complicated class, which combines several functionalities dealing with stick inputs in pwm and logical units, logical and actual actuator outputs, unit conversion etc, etc The intent of this PR is to clarify existing use of the class. At the basic level it should now be possible to grep all places where private variable is set by searching for the set_xx function. (The wider purpose is to provide a more generic and logically simpler method of output mixing. This is a small step)
665 lines
37 KiB
C++
665 lines
37 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#include "Copter.h"
|
|
|
|
#if POSHOLD_ENABLED == ENABLED
|
|
|
|
/*
|
|
* control_poshold.pde - init and run calls for PosHold flight mode
|
|
* PosHold tries to improve upon regular loiter by mixing the pilot input with the loiter controller
|
|
*/
|
|
|
|
#define POSHOLD_SPEED_0 10 // speed below which it is always safe to switch to loiter
|
|
|
|
// 400hz loop update rate
|
|
#define POSHOLD_BRAKE_TIME_ESTIMATE_MAX (600*4) // max number of cycles the brake will be applied before we switch to loiter
|
|
#define POSHOLD_BRAKE_TO_LOITER_TIMER (150*4) // Number of cycles to transition from brake mode to loiter mode. Must be lower than POSHOLD_LOITER_STAB_TIMER
|
|
#define POSHOLD_WIND_COMP_START_TIMER (150*4) // Number of cycles to start wind compensation update after loiter is engaged
|
|
#define POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER (50*4) // Set it from 100 to 200, the number of centiseconds loiter and manual commands are mixed to make a smooth transition.
|
|
#define POSHOLD_SMOOTH_RATE_FACTOR 0.0125f // filter applied to pilot's roll/pitch input as it returns to center. A lower number will cause the roll/pitch to return to zero more slowly if the brake_rate is also low.
|
|
#define POSHOLD_WIND_COMP_TIMER_10HZ 40 // counter value used to reduce wind compensation to 10hz
|
|
#define LOOP_RATE_FACTOR 4 // used to adapt PosHold params to loop_rate
|
|
#define TC_WIND_COMP 0.0025f // Time constant for poshold_update_wind_comp_estimate()
|
|
|
|
// definitions that are independent of main loop rate
|
|
#define POSHOLD_STICK_RELEASE_SMOOTH_ANGLE 1800 // max angle required (in centi-degrees) after which the smooth stick release effect is applied
|
|
#define POSHOLD_WIND_COMP_ESTIMATE_SPEED_MAX 10 // wind compensation estimates will only run when velocity is at or below this speed in cm/s
|
|
|
|
// mission state enumeration
|
|
enum poshold_rp_mode {
|
|
POSHOLD_PILOT_OVERRIDE=0, // pilot is controlling this axis (i.e. roll or pitch)
|
|
POSHOLD_BRAKE, // this axis is braking towards zero
|
|
POSHOLD_BRAKE_READY_TO_LOITER, // this axis has completed braking and is ready to enter loiter mode (both modes must be this value before moving to next stage)
|
|
POSHOLD_BRAKE_TO_LOITER, // both vehicle's axis (roll and pitch) are transitioning from braking to loiter mode (braking and loiter controls are mixed)
|
|
POSHOLD_LOITER, // both vehicle axis are holding position
|
|
POSHOLD_CONTROLLER_TO_PILOT_OVERRIDE // pilot has input controls on this axis and this axis is transitioning to pilot override (other axis will transition to brake if no pilot input)
|
|
};
|
|
|
|
static struct {
|
|
poshold_rp_mode roll_mode : 3; // roll mode: pilot override, brake or loiter
|
|
poshold_rp_mode pitch_mode : 3; // pitch mode: pilot override, brake or loiter
|
|
uint8_t braking_time_updated_roll : 1; // true once we have re-estimated the braking time. This is done once as the vehicle begins to flatten out after braking
|
|
uint8_t braking_time_updated_pitch : 1; // true once we have re-estimated the braking time. This is done once as the vehicle begins to flatten out after braking
|
|
uint8_t loiter_reset_I : 1; // true the very first time PosHold enters loiter, thereafter we trust the i terms loiter has
|
|
|
|
// pilot input related variables
|
|
float pilot_roll; // pilot requested roll angle (filtered to slow returns to zero)
|
|
float pilot_pitch; // pilot requested roll angle (filtered to slow returns to zero)
|
|
|
|
// braking related variables
|
|
float brake_gain; // gain used during conversion of vehicle's velocity to lean angle during braking (calculated from brake_rate)
|
|
int16_t brake_roll; // target roll angle during braking periods
|
|
int16_t brake_pitch; // target pitch angle during braking periods
|
|
int16_t brake_timeout_roll; // number of cycles allowed for the braking to complete, this timeout will be updated at half-braking
|
|
int16_t brake_timeout_pitch; // number of cycles allowed for the braking to complete, this timeout will be updated at half-braking
|
|
int16_t brake_angle_max_roll; // maximum lean angle achieved during braking. Used to determine when the vehicle has begun to flatten out so that we can re-estimate the braking time
|
|
int16_t brake_angle_max_pitch; // maximum lean angle achieved during braking Used to determine when the vehicle has begun to flatten out so that we can re-estimate the braking time
|
|
int16_t brake_to_loiter_timer; // cycles to mix brake and loiter controls in POSHOLD_BRAKE_TO_LOITER
|
|
|
|
// loiter related variables
|
|
int16_t controller_to_pilot_timer_roll; // cycles to mix controller and pilot controls in POSHOLD_CONTROLLER_TO_PILOT
|
|
int16_t controller_to_pilot_timer_pitch; // cycles to mix controller and pilot controls in POSHOLD_CONTROLLER_TO_PILOT
|
|
int16_t controller_final_roll; // final roll angle from controller as we exit brake or loiter mode (used for mixing with pilot input)
|
|
int16_t controller_final_pitch; // final pitch angle from controller as we exit brake or loiter mode (used for mixing with pilot input)
|
|
|
|
// wind compensation related variables
|
|
Vector2f wind_comp_ef; // wind compensation in earth frame, filtered lean angles from position controller
|
|
int16_t wind_comp_roll; // roll angle to compensate for wind
|
|
int16_t wind_comp_pitch; // pitch angle to compensate for wind
|
|
uint16_t wind_comp_start_timer; // counter to delay start of wind compensation for a short time after loiter is engaged
|
|
int8_t wind_comp_timer; // counter to reduce wind comp roll/pitch lean angle calcs to 10hz
|
|
|
|
// final output
|
|
int16_t roll; // final roll angle sent to attitude controller
|
|
int16_t pitch; // final pitch angle sent to attitude controller
|
|
} poshold;
|
|
|
|
// poshold_init - initialise PosHold controller
|
|
bool Copter::poshold_init(bool ignore_checks)
|
|
{
|
|
// fail to initialise PosHold mode if no GPS lock
|
|
if (!position_ok() && !ignore_checks) {
|
|
return false;
|
|
}
|
|
|
|
// initialize vertical speeds and acceleration
|
|
pos_control.set_speed_z(-g.pilot_velocity_z_max, g.pilot_velocity_z_max);
|
|
pos_control.set_accel_z(g.pilot_accel_z);
|
|
|
|
// initialise position and desired velocity
|
|
pos_control.set_alt_target(inertial_nav.get_altitude());
|
|
pos_control.set_desired_velocity_z(inertial_nav.get_velocity_z());
|
|
|
|
// initialise lean angles to current attitude
|
|
poshold.pilot_roll = 0;
|
|
poshold.pilot_pitch = 0;
|
|
|
|
// compute brake_gain
|
|
poshold.brake_gain = (15.0f * (float)g.poshold_brake_rate + 95.0f) / 100.0f;
|
|
|
|
if (ap.land_complete) {
|
|
// if landed begin in loiter mode
|
|
poshold.roll_mode = POSHOLD_LOITER;
|
|
poshold.pitch_mode = POSHOLD_LOITER;
|
|
// set target to current position
|
|
// only init here as we can switch to PosHold in flight with a velocity <> 0 that will be used as _last_vel in PosControl and never updated again as we inhibit Reset_I
|
|
wp_nav.init_loiter_target();
|
|
}else{
|
|
// if not landed start in pilot override to avoid hard twitch
|
|
poshold.roll_mode = POSHOLD_PILOT_OVERRIDE;
|
|
poshold.pitch_mode = POSHOLD_PILOT_OVERRIDE;
|
|
}
|
|
|
|
// loiter's I terms should be reset the first time only
|
|
poshold.loiter_reset_I = true;
|
|
|
|
// initialise wind_comp each time PosHold is switched on
|
|
poshold.wind_comp_ef.zero();
|
|
poshold.wind_comp_roll = 0;
|
|
poshold.wind_comp_pitch = 0;
|
|
poshold.wind_comp_timer = 0;
|
|
|
|
return true;
|
|
}
|
|
|
|
// poshold_run - runs the PosHold controller
|
|
// should be called at 100hz or more
|
|
void Copter::poshold_run()
|
|
{
|
|
float target_roll, target_pitch; // pilot's roll and pitch angle inputs
|
|
float target_yaw_rate = 0; // pilot desired yaw rate in centi-degrees/sec
|
|
float target_climb_rate = 0; // pilot desired climb rate in centimeters/sec
|
|
float takeoff_climb_rate = 0.0f; // takeoff induced climb rate
|
|
float brake_to_loiter_mix; // mix of brake and loiter controls. 0 = fully brake controls, 1 = fully loiter controls
|
|
float controller_to_pilot_roll_mix; // mix of controller and pilot controls. 0 = fully last controller controls, 1 = fully pilot controls
|
|
float controller_to_pilot_pitch_mix; // mix of controller and pilot controls. 0 = fully last controller controls, 1 = fully pilot controls
|
|
float vel_fw, vel_right; // vehicle's current velocity in body-frame forward and right directions
|
|
const Vector3f& vel = inertial_nav.get_velocity();
|
|
|
|
// initialize vertical speeds and acceleration
|
|
pos_control.set_speed_z(-g.pilot_velocity_z_max, g.pilot_velocity_z_max);
|
|
pos_control.set_accel_z(g.pilot_accel_z);
|
|
|
|
// if not auto armed or motor interlock not enabled set throttle to zero and exit immediately
|
|
if (!motors.armed() || !ap.auto_armed || !motors.get_interlock()) {
|
|
motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
|
|
wp_nav.init_loiter_target();
|
|
attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
|
|
pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->get_control_in())-throttle_average);
|
|
return;
|
|
}
|
|
|
|
// process pilot inputs
|
|
if (!failsafe.radio) {
|
|
// apply SIMPLE mode transform to pilot inputs
|
|
update_simple_mode();
|
|
|
|
// get pilot's desired yaw rate
|
|
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
|
|
|
|
// get pilot desired climb rate (for alt-hold mode and take-off)
|
|
target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->get_control_in());
|
|
target_climb_rate = constrain_float(target_climb_rate, -g.pilot_velocity_z_max, g.pilot_velocity_z_max);
|
|
|
|
// get takeoff adjusted pilot and takeoff climb rates
|
|
takeoff_get_climb_rates(target_climb_rate, takeoff_climb_rate);
|
|
|
|
// check for take-off
|
|
if (ap.land_complete && (takeoff_state.running || channel_throttle->get_control_in() > get_takeoff_trigger_throttle())) {
|
|
if (!takeoff_state.running) {
|
|
takeoff_timer_start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f));
|
|
}
|
|
|
|
// indicate we are taking off
|
|
set_land_complete(false);
|
|
// clear i term when we're taking off
|
|
set_throttle_takeoff();
|
|
}
|
|
}
|
|
|
|
// relax loiter target if we might be landed
|
|
if (ap.land_complete_maybe) {
|
|
wp_nav.loiter_soften_for_landing();
|
|
}
|
|
|
|
// if landed initialise loiter targets, set throttle to zero and exit
|
|
if (ap.land_complete) {
|
|
// if throttle zero reset attitude and exit immediately
|
|
if (ap.throttle_zero) {
|
|
motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
|
|
}else{
|
|
motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
|
|
}
|
|
wp_nav.init_loiter_target();
|
|
// move throttle to between minimum and non-takeoff-throttle to keep us on the ground
|
|
attitude_control.set_throttle_out(get_throttle_pre_takeoff(channel_throttle->get_control_in()),false,g.throttle_filt);
|
|
pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->get_control_in())-throttle_average);
|
|
return;
|
|
}else{
|
|
// convert pilot input to lean angles
|
|
get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, aparm.angle_max);
|
|
|
|
// convert inertial nav earth-frame velocities to body-frame
|
|
// To-Do: move this to AP_Math (or perhaps we already have a function to do this)
|
|
vel_fw = vel.x*ahrs.cos_yaw() + vel.y*ahrs.sin_yaw();
|
|
vel_right = -vel.x*ahrs.sin_yaw() + vel.y*ahrs.cos_yaw();
|
|
|
|
// If not in LOITER, retrieve latest wind compensation lean angles related to current yaw
|
|
if (poshold.roll_mode != POSHOLD_LOITER || poshold.pitch_mode != POSHOLD_LOITER)
|
|
poshold_get_wind_comp_lean_angles(poshold.wind_comp_roll, poshold.wind_comp_pitch);
|
|
|
|
// Roll state machine
|
|
// Each state (aka mode) is responsible for:
|
|
// 1. dealing with pilot input
|
|
// 2. calculating the final roll output to the attitude controller
|
|
// 3. checking if the state (aka mode) should be changed and if 'yes' perform any required initialisation for the new state
|
|
switch (poshold.roll_mode) {
|
|
|
|
case POSHOLD_PILOT_OVERRIDE:
|
|
// update pilot desired roll angle using latest radio input
|
|
// this filters the input so that it returns to zero no faster than the brake-rate
|
|
poshold_update_pilot_lean_angle(poshold.pilot_roll, target_roll);
|
|
|
|
// switch to BRAKE mode for next iteration if no pilot input
|
|
if (is_zero(target_roll) && (fabsf(poshold.pilot_roll) < 2 * g.poshold_brake_rate)) {
|
|
// initialise BRAKE mode
|
|
poshold.roll_mode = POSHOLD_BRAKE; // Set brake roll mode
|
|
poshold.brake_roll = 0; // initialise braking angle to zero
|
|
poshold.brake_angle_max_roll = 0; // reset brake_angle_max so we can detect when vehicle begins to flatten out during braking
|
|
poshold.brake_timeout_roll = POSHOLD_BRAKE_TIME_ESTIMATE_MAX; // number of cycles the brake will be applied, updated during braking mode.
|
|
poshold.braking_time_updated_roll = false; // flag the braking time can be re-estimated
|
|
}
|
|
|
|
// final lean angle should be pilot input plus wind compensation
|
|
poshold.roll = poshold.pilot_roll + poshold.wind_comp_roll;
|
|
break;
|
|
|
|
case POSHOLD_BRAKE:
|
|
case POSHOLD_BRAKE_READY_TO_LOITER:
|
|
// calculate brake_roll angle to counter-act velocity
|
|
poshold_update_brake_angle_from_velocity(poshold.brake_roll, vel_right);
|
|
|
|
// update braking time estimate
|
|
if (!poshold.braking_time_updated_roll) {
|
|
// check if brake angle is increasing
|
|
if (abs(poshold.brake_roll) >= poshold.brake_angle_max_roll) {
|
|
poshold.brake_angle_max_roll = abs(poshold.brake_roll);
|
|
} else {
|
|
// braking angle has started decreasing so re-estimate braking time
|
|
poshold.brake_timeout_roll = 1+(uint16_t)(LOOP_RATE_FACTOR*15L*(int32_t)(abs(poshold.brake_roll))/(10L*(int32_t)g.poshold_brake_rate)); // the 1.2 (12/10) factor has to be tuned in flight, here it means 120% of the "normal" time.
|
|
poshold.braking_time_updated_roll = true;
|
|
}
|
|
}
|
|
|
|
// if velocity is very low reduce braking time to 0.5seconds
|
|
if ((fabsf(vel_right) <= POSHOLD_SPEED_0) && (poshold.brake_timeout_roll > 50*LOOP_RATE_FACTOR)) {
|
|
poshold.brake_timeout_roll = 50*LOOP_RATE_FACTOR;
|
|
}
|
|
|
|
// reduce braking timer
|
|
if (poshold.brake_timeout_roll > 0) {
|
|
poshold.brake_timeout_roll--;
|
|
} else {
|
|
// indicate that we are ready to move to Loiter.
|
|
// Loiter will only actually be engaged once both roll_mode and pitch_mode are changed to POSHOLD_BRAKE_READY_TO_LOITER
|
|
// logic for engaging loiter is handled below the roll and pitch mode switch statements
|
|
poshold.roll_mode = POSHOLD_BRAKE_READY_TO_LOITER;
|
|
}
|
|
|
|
// final lean angle is braking angle + wind compensation angle
|
|
poshold.roll = poshold.brake_roll + poshold.wind_comp_roll;
|
|
|
|
// check for pilot input
|
|
if (!is_zero(target_roll)) {
|
|
// init transition to pilot override
|
|
poshold_roll_controller_to_pilot_override();
|
|
}
|
|
break;
|
|
|
|
case POSHOLD_BRAKE_TO_LOITER:
|
|
case POSHOLD_LOITER:
|
|
// these modes are combined roll-pitch modes and are handled below
|
|
break;
|
|
|
|
case POSHOLD_CONTROLLER_TO_PILOT_OVERRIDE:
|
|
// update pilot desired roll angle using latest radio input
|
|
// this filters the input so that it returns to zero no faster than the brake-rate
|
|
poshold_update_pilot_lean_angle(poshold.pilot_roll, target_roll);
|
|
|
|
// count-down loiter to pilot timer
|
|
if (poshold.controller_to_pilot_timer_roll > 0) {
|
|
poshold.controller_to_pilot_timer_roll--;
|
|
} else {
|
|
// when timer runs out switch to full pilot override for next iteration
|
|
poshold.roll_mode = POSHOLD_PILOT_OVERRIDE;
|
|
}
|
|
|
|
// calculate controller_to_pilot mix ratio
|
|
controller_to_pilot_roll_mix = (float)poshold.controller_to_pilot_timer_roll / (float)POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER;
|
|
|
|
// mix final loiter lean angle and pilot desired lean angles
|
|
poshold.roll = poshold_mix_controls(controller_to_pilot_roll_mix, poshold.controller_final_roll, poshold.pilot_roll + poshold.wind_comp_roll);
|
|
break;
|
|
}
|
|
|
|
// Pitch state machine
|
|
// Each state (aka mode) is responsible for:
|
|
// 1. dealing with pilot input
|
|
// 2. calculating the final pitch output to the attitude contpitcher
|
|
// 3. checking if the state (aka mode) should be changed and if 'yes' perform any required initialisation for the new state
|
|
switch (poshold.pitch_mode) {
|
|
|
|
case POSHOLD_PILOT_OVERRIDE:
|
|
// update pilot desired pitch angle using latest radio input
|
|
// this filters the input so that it returns to zero no faster than the brake-rate
|
|
poshold_update_pilot_lean_angle(poshold.pilot_pitch, target_pitch);
|
|
|
|
// switch to BRAKE mode for next iteration if no pilot input
|
|
if (is_zero(target_pitch) && (fabsf(poshold.pilot_pitch) < 2 * g.poshold_brake_rate)) {
|
|
// initialise BRAKE mode
|
|
poshold.pitch_mode = POSHOLD_BRAKE; // set brake pitch mode
|
|
poshold.brake_pitch = 0; // initialise braking angle to zero
|
|
poshold.brake_angle_max_pitch = 0; // reset brake_angle_max so we can detect when vehicle begins to flatten out during braking
|
|
poshold.brake_timeout_pitch = POSHOLD_BRAKE_TIME_ESTIMATE_MAX; // number of cycles the brake will be applied, updated during braking mode.
|
|
poshold.braking_time_updated_pitch = false; // flag the braking time can be re-estimated
|
|
}
|
|
|
|
// final lean angle should be pilot input plus wind compensation
|
|
poshold.pitch = poshold.pilot_pitch + poshold.wind_comp_pitch;
|
|
break;
|
|
|
|
case POSHOLD_BRAKE:
|
|
case POSHOLD_BRAKE_READY_TO_LOITER:
|
|
// calculate brake_pitch angle to counter-act velocity
|
|
poshold_update_brake_angle_from_velocity(poshold.brake_pitch, -vel_fw);
|
|
|
|
// update braking time estimate
|
|
if (!poshold.braking_time_updated_pitch) {
|
|
// check if brake angle is increasing
|
|
if (abs(poshold.brake_pitch) >= poshold.brake_angle_max_pitch) {
|
|
poshold.brake_angle_max_pitch = abs(poshold.brake_pitch);
|
|
} else {
|
|
// braking angle has started decreasing so re-estimate braking time
|
|
poshold.brake_timeout_pitch = 1+(uint16_t)(LOOP_RATE_FACTOR*15L*(int32_t)(abs(poshold.brake_pitch))/(10L*(int32_t)g.poshold_brake_rate)); // the 1.2 (12/10) factor has to be tuned in flight, here it means 120% of the "normal" time.
|
|
poshold.braking_time_updated_pitch = true;
|
|
}
|
|
}
|
|
|
|
// if velocity is very low reduce braking time to 0.5seconds
|
|
if ((fabsf(vel_fw) <= POSHOLD_SPEED_0) && (poshold.brake_timeout_pitch > 50*LOOP_RATE_FACTOR)) {
|
|
poshold.brake_timeout_pitch = 50*LOOP_RATE_FACTOR;
|
|
}
|
|
|
|
// reduce braking timer
|
|
if (poshold.brake_timeout_pitch > 0) {
|
|
poshold.brake_timeout_pitch--;
|
|
} else {
|
|
// indicate that we are ready to move to Loiter.
|
|
// Loiter will only actually be engaged once both pitch_mode and pitch_mode are changed to POSHOLD_BRAKE_READY_TO_LOITER
|
|
// logic for engaging loiter is handled below the pitch and pitch mode switch statements
|
|
poshold.pitch_mode = POSHOLD_BRAKE_READY_TO_LOITER;
|
|
}
|
|
|
|
// final lean angle is braking angle + wind compensation angle
|
|
poshold.pitch = poshold.brake_pitch + poshold.wind_comp_pitch;
|
|
|
|
// check for pilot input
|
|
if (!is_zero(target_pitch)) {
|
|
// init transition to pilot override
|
|
poshold_pitch_controller_to_pilot_override();
|
|
}
|
|
break;
|
|
|
|
case POSHOLD_BRAKE_TO_LOITER:
|
|
case POSHOLD_LOITER:
|
|
// these modes are combined pitch-pitch modes and are handled below
|
|
break;
|
|
|
|
case POSHOLD_CONTROLLER_TO_PILOT_OVERRIDE:
|
|
// update pilot desired pitch angle using latest radio input
|
|
// this filters the input so that it returns to zero no faster than the brake-rate
|
|
poshold_update_pilot_lean_angle(poshold.pilot_pitch, target_pitch);
|
|
|
|
// count-down loiter to pilot timer
|
|
if (poshold.controller_to_pilot_timer_pitch > 0) {
|
|
poshold.controller_to_pilot_timer_pitch--;
|
|
} else {
|
|
// when timer runs out switch to full pilot override for next iteration
|
|
poshold.pitch_mode = POSHOLD_PILOT_OVERRIDE;
|
|
}
|
|
|
|
// calculate controller_to_pilot mix ratio
|
|
controller_to_pilot_pitch_mix = (float)poshold.controller_to_pilot_timer_pitch / (float)POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER;
|
|
|
|
// mix final loiter lean angle and pilot desired lean angles
|
|
poshold.pitch = poshold_mix_controls(controller_to_pilot_pitch_mix, poshold.controller_final_pitch, poshold.pilot_pitch + poshold.wind_comp_pitch);
|
|
break;
|
|
}
|
|
|
|
// set motors to full range
|
|
motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
|
|
|
|
//
|
|
// Shared roll & pitch states (POSHOLD_BRAKE_TO_LOITER and POSHOLD_LOITER)
|
|
//
|
|
|
|
// switch into LOITER mode when both roll and pitch are ready
|
|
if (poshold.roll_mode == POSHOLD_BRAKE_READY_TO_LOITER && poshold.pitch_mode == POSHOLD_BRAKE_READY_TO_LOITER) {
|
|
poshold.roll_mode = POSHOLD_BRAKE_TO_LOITER;
|
|
poshold.pitch_mode = POSHOLD_BRAKE_TO_LOITER;
|
|
poshold.brake_to_loiter_timer = POSHOLD_BRAKE_TO_LOITER_TIMER;
|
|
// init loiter controller
|
|
wp_nav.init_loiter_target(inertial_nav.get_position(), poshold.loiter_reset_I); // (false) to avoid I_term reset. In original code, velocity(0,0,0) was used instead of current velocity: wp_nav.init_loiter_target(inertial_nav.get_position(), Vector3f(0,0,0));
|
|
// at this stage, we are going to run update_loiter that will reset I_term once. From now, we ensure next time that we will enter loiter and update it, I_term won't be reset anymore
|
|
poshold.loiter_reset_I = false;
|
|
// set delay to start of wind compensation estimate updates
|
|
poshold.wind_comp_start_timer = POSHOLD_WIND_COMP_START_TIMER;
|
|
}
|
|
|
|
// roll-mode is used as the combined roll+pitch mode when in BRAKE_TO_LOITER or LOITER modes
|
|
if (poshold.roll_mode == POSHOLD_BRAKE_TO_LOITER || poshold.roll_mode == POSHOLD_LOITER) {
|
|
|
|
// force pitch mode to be same as roll_mode just to keep it consistent (it's not actually used in these states)
|
|
poshold.pitch_mode = poshold.roll_mode;
|
|
|
|
// handle combined roll+pitch mode
|
|
switch (poshold.roll_mode) {
|
|
case POSHOLD_BRAKE_TO_LOITER:
|
|
// reduce brake_to_loiter timer
|
|
if (poshold.brake_to_loiter_timer > 0) {
|
|
poshold.brake_to_loiter_timer--;
|
|
} else {
|
|
// progress to full loiter on next iteration
|
|
poshold.roll_mode = POSHOLD_LOITER;
|
|
poshold.pitch_mode = POSHOLD_LOITER;
|
|
}
|
|
|
|
// calculate percentage mix of loiter and brake control
|
|
brake_to_loiter_mix = (float)poshold.brake_to_loiter_timer / (float)POSHOLD_BRAKE_TO_LOITER_TIMER;
|
|
|
|
// calculate brake_roll and pitch angles to counter-act velocity
|
|
poshold_update_brake_angle_from_velocity(poshold.brake_roll, vel_right);
|
|
poshold_update_brake_angle_from_velocity(poshold.brake_pitch, -vel_fw);
|
|
|
|
// run loiter controller
|
|
wp_nav.update_loiter(ekfGndSpdLimit, ekfNavVelGainScaler);
|
|
|
|
// calculate final roll and pitch output by mixing loiter and brake controls
|
|
poshold.roll = poshold_mix_controls(brake_to_loiter_mix, poshold.brake_roll + poshold.wind_comp_roll, wp_nav.get_roll());
|
|
poshold.pitch = poshold_mix_controls(brake_to_loiter_mix, poshold.brake_pitch + poshold.wind_comp_pitch, wp_nav.get_pitch());
|
|
|
|
// check for pilot input
|
|
if (!is_zero(target_roll) || !is_zero(target_pitch)) {
|
|
// if roll input switch to pilot override for roll
|
|
if (!is_zero(target_roll)) {
|
|
// init transition to pilot override
|
|
poshold_roll_controller_to_pilot_override();
|
|
// switch pitch-mode to brake (but ready to go back to loiter anytime)
|
|
// no need to reset poshold.brake_pitch here as wind comp has not been updated since last brake_pitch computation
|
|
poshold.pitch_mode = POSHOLD_BRAKE_READY_TO_LOITER;
|
|
}
|
|
// if pitch input switch to pilot override for pitch
|
|
if (!is_zero(target_pitch)) {
|
|
// init transition to pilot override
|
|
poshold_pitch_controller_to_pilot_override();
|
|
if (is_zero(target_roll)) {
|
|
// switch roll-mode to brake (but ready to go back to loiter anytime)
|
|
// no need to reset poshold.brake_roll here as wind comp has not been updated since last brake_roll computation
|
|
poshold.roll_mode = POSHOLD_BRAKE_READY_TO_LOITER;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case POSHOLD_LOITER:
|
|
// run loiter controller
|
|
wp_nav.update_loiter(ekfGndSpdLimit, ekfNavVelGainScaler);
|
|
|
|
// set roll angle based on loiter controller outputs
|
|
poshold.roll = wp_nav.get_roll();
|
|
poshold.pitch = wp_nav.get_pitch();
|
|
|
|
// update wind compensation estimate
|
|
poshold_update_wind_comp_estimate();
|
|
|
|
// check for pilot input
|
|
if (!is_zero(target_roll) || !is_zero(target_pitch)) {
|
|
// if roll input switch to pilot override for roll
|
|
if (!is_zero(target_roll)) {
|
|
// init transition to pilot override
|
|
poshold_roll_controller_to_pilot_override();
|
|
// switch pitch-mode to brake (but ready to go back to loiter anytime)
|
|
poshold.pitch_mode = POSHOLD_BRAKE_READY_TO_LOITER;
|
|
// reset brake_pitch because wind_comp is now different and should give the compensation of the whole previous loiter angle
|
|
poshold.brake_pitch = 0;
|
|
}
|
|
// if pitch input switch to pilot override for pitch
|
|
if (!is_zero(target_pitch)) {
|
|
// init transition to pilot override
|
|
poshold_pitch_controller_to_pilot_override();
|
|
// if roll not overriden switch roll-mode to brake (but be ready to go back to loiter any time)
|
|
if (is_zero(target_roll)) {
|
|
poshold.roll_mode = POSHOLD_BRAKE_READY_TO_LOITER;
|
|
poshold.brake_roll = 0;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
// do nothing for uncombined roll and pitch modes
|
|
break;
|
|
}
|
|
}
|
|
|
|
// constrain target pitch/roll angles
|
|
poshold.roll = constrain_int16(poshold.roll, -aparm.angle_max, aparm.angle_max);
|
|
poshold.pitch = constrain_int16(poshold.pitch, -aparm.angle_max, aparm.angle_max);
|
|
|
|
// update attitude controller targets
|
|
attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(poshold.roll, poshold.pitch, target_yaw_rate);
|
|
|
|
// throttle control
|
|
if (sonar_enabled && (sonar_alt_health >= SONAR_ALT_HEALTH_MAX)) {
|
|
// if sonar is ok, use surface tracking
|
|
target_climb_rate = get_surface_tracking_climb_rate(target_climb_rate, pos_control.get_alt_target(), G_Dt);
|
|
}
|
|
// update altitude target and call position controller
|
|
pos_control.set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
|
|
pos_control.add_takeoff_climb_rate(takeoff_climb_rate, G_Dt);
|
|
pos_control.update_z_controller();
|
|
}
|
|
}
|
|
|
|
// poshold_update_pilot_lean_angle - update the pilot's filtered lean angle with the latest raw input received
|
|
void Copter::poshold_update_pilot_lean_angle(float &lean_angle_filtered, float &lean_angle_raw)
|
|
{
|
|
// if raw input is large or reversing the vehicle's lean angle immediately set the fitlered angle to the new raw angle
|
|
if ((lean_angle_filtered > 0 && lean_angle_raw < 0) || (lean_angle_filtered < 0 && lean_angle_raw > 0) || (fabsf(lean_angle_raw) > POSHOLD_STICK_RELEASE_SMOOTH_ANGLE)) {
|
|
lean_angle_filtered = lean_angle_raw;
|
|
} else {
|
|
// lean_angle_raw must be pulling lean_angle_filtered towards zero, smooth the decrease
|
|
if (lean_angle_filtered > 0) {
|
|
// reduce the filtered lean angle at 5% or the brake rate (whichever is faster).
|
|
lean_angle_filtered -= MAX((float)lean_angle_filtered * POSHOLD_SMOOTH_RATE_FACTOR, MAX(1, g.poshold_brake_rate/LOOP_RATE_FACTOR));
|
|
// do not let the filtered angle fall below the pilot's input lean angle.
|
|
// the above line pulls the filtered angle down and the below line acts as a catch
|
|
lean_angle_filtered = MAX(lean_angle_filtered, lean_angle_raw);
|
|
}else{
|
|
lean_angle_filtered += MAX(-(float)lean_angle_filtered * POSHOLD_SMOOTH_RATE_FACTOR, MAX(1, g.poshold_brake_rate/LOOP_RATE_FACTOR));
|
|
lean_angle_filtered = MIN(lean_angle_filtered, lean_angle_raw);
|
|
}
|
|
}
|
|
}
|
|
|
|
// poshold_mix_controls - mixes two controls based on the mix_ratio
|
|
// mix_ratio of 1 = use first_control completely, 0 = use second_control completely, 0.5 = mix evenly
|
|
int16_t Copter::poshold_mix_controls(float mix_ratio, int16_t first_control, int16_t second_control)
|
|
{
|
|
mix_ratio = constrain_float(mix_ratio, 0.0f, 1.0f);
|
|
return (int16_t)((mix_ratio * first_control) + ((1.0f-mix_ratio)*second_control));
|
|
}
|
|
|
|
// poshold_update_brake_angle_from_velocity - updates the brake_angle based on the vehicle's velocity and brake_gain
|
|
// brake_angle is slewed with the wpnav.poshold_brake_rate and constrained by the wpnav.poshold_braking_angle_max
|
|
// velocity is assumed to be in the same direction as lean angle so for pitch you should provide the velocity backwards (i.e. -ve forward velocity)
|
|
void Copter::poshold_update_brake_angle_from_velocity(int16_t &brake_angle, float velocity)
|
|
{
|
|
float lean_angle;
|
|
int16_t brake_rate = g.poshold_brake_rate;
|
|
|
|
brake_rate /= 4;
|
|
if (brake_rate <= 0) {
|
|
brake_rate = 1;
|
|
}
|
|
|
|
// calculate velocity-only based lean angle
|
|
if (velocity >= 0) {
|
|
lean_angle = -poshold.brake_gain * velocity * (1.0f+500.0f/(velocity+60.0f));
|
|
} else {
|
|
lean_angle = -poshold.brake_gain * velocity * (1.0f+500.0f/(-velocity+60.0f));
|
|
}
|
|
|
|
// do not let lean_angle be too far from brake_angle
|
|
brake_angle = constrain_int16((int16_t)lean_angle, brake_angle - brake_rate, brake_angle + brake_rate);
|
|
|
|
// constrain final brake_angle
|
|
brake_angle = constrain_int16(brake_angle, -g.poshold_brake_angle_max, g.poshold_brake_angle_max);
|
|
}
|
|
|
|
// poshold_update_wind_comp_estimate - updates wind compensation estimate
|
|
// should be called at the maximum loop rate when loiter is engaged
|
|
void Copter::poshold_update_wind_comp_estimate()
|
|
{
|
|
// check wind estimate start has not been delayed
|
|
if (poshold.wind_comp_start_timer > 0) {
|
|
poshold.wind_comp_start_timer--;
|
|
return;
|
|
}
|
|
|
|
// check horizontal velocity is low
|
|
if (inertial_nav.get_velocity_xy() > POSHOLD_WIND_COMP_ESTIMATE_SPEED_MAX) {
|
|
return;
|
|
}
|
|
|
|
// get position controller accel target
|
|
// To-Do: clean this up by using accessor in loiter controller (or move entire PosHold controller to a library shared with loiter)
|
|
const Vector3f& accel_target = pos_control.get_accel_target();
|
|
|
|
// update wind compensation in earth-frame lean angles
|
|
if (is_zero(poshold.wind_comp_ef.x)) {
|
|
// if wind compensation has not been initialised set it immediately to the pos controller's desired accel in north direction
|
|
poshold.wind_comp_ef.x = accel_target.x;
|
|
} else {
|
|
// low pass filter the position controller's lean angle output
|
|
poshold.wind_comp_ef.x = (1.0f-TC_WIND_COMP)*poshold.wind_comp_ef.x + TC_WIND_COMP*accel_target.x;
|
|
}
|
|
if (is_zero(poshold.wind_comp_ef.y)) {
|
|
// if wind compensation has not been initialised set it immediately to the pos controller's desired accel in north direction
|
|
poshold.wind_comp_ef.y = accel_target.y;
|
|
} else {
|
|
// low pass filter the position controller's lean angle output
|
|
poshold.wind_comp_ef.y = (1.0f-TC_WIND_COMP)*poshold.wind_comp_ef.y + TC_WIND_COMP*accel_target.y;
|
|
}
|
|
}
|
|
|
|
// poshold_get_wind_comp_lean_angles - retrieve wind compensation angles in body frame roll and pitch angles
|
|
// should be called at the maximum loop rate
|
|
void Copter::poshold_get_wind_comp_lean_angles(int16_t &roll_angle, int16_t &pitch_angle)
|
|
{
|
|
// reduce rate to 10hz
|
|
poshold.wind_comp_timer++;
|
|
if (poshold.wind_comp_timer < POSHOLD_WIND_COMP_TIMER_10HZ) {
|
|
return;
|
|
}
|
|
poshold.wind_comp_timer = 0;
|
|
|
|
// convert earth frame desired accelerations to body frame roll and pitch lean angles
|
|
roll_angle = atanf((-poshold.wind_comp_ef.x*ahrs.sin_yaw() + poshold.wind_comp_ef.y*ahrs.cos_yaw())/981)*(18000/M_PI);
|
|
pitch_angle = atanf(-(poshold.wind_comp_ef.x*ahrs.cos_yaw() + poshold.wind_comp_ef.y*ahrs.sin_yaw())/981)*(18000/M_PI);
|
|
}
|
|
|
|
// poshold_roll_controller_to_pilot_override - initialises transition from a controller submode (brake or loiter) to a pilot override on roll axis
|
|
void Copter::poshold_roll_controller_to_pilot_override()
|
|
{
|
|
poshold.roll_mode = POSHOLD_CONTROLLER_TO_PILOT_OVERRIDE;
|
|
poshold.controller_to_pilot_timer_roll = POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER;
|
|
// initialise pilot_roll to 0, wind_comp will be updated to compensate and poshold_update_pilot_lean_angle function shall not smooth this transition at next iteration. so 0 is the right value
|
|
poshold.pilot_roll = 0;
|
|
// store final controller output for mixing with pilot input
|
|
poshold.controller_final_roll = poshold.roll;
|
|
}
|
|
|
|
// poshold_pitch_controller_to_pilot_override - initialises transition from a controller submode (brake or loiter) to a pilot override on roll axis
|
|
void Copter::poshold_pitch_controller_to_pilot_override()
|
|
{
|
|
poshold.pitch_mode = POSHOLD_CONTROLLER_TO_PILOT_OVERRIDE;
|
|
poshold.controller_to_pilot_timer_pitch = POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER;
|
|
// initialise pilot_pitch to 0, wind_comp will be updated to compensate and poshold_update_pilot_lean_angle function shall not smooth this transition at next iteration. so 0 is the right value
|
|
poshold.pilot_pitch = 0;
|
|
// store final loiter outputs for mixing with pilot input
|
|
poshold.controller_final_pitch = poshold.pitch;
|
|
}
|
|
|
|
#endif // POSHOLD_ENABLED == ENABLED
|