ardupilot/libraries/AP_Motors/AP_MotorsHeli.cpp

459 lines
15 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AP_MotorsHeli.cpp - ArduCopter motors library
* Code by RandyMackay. DIYDrones.com
*
*/
#include <stdlib.h>
#include <AP_HAL/AP_HAL.h>
#include "AP_MotorsHeli.h"
#include <GCS_MAVLink/GCS.h>
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AP_MotorsHeli::var_info[] = {
// 1 was ROL_MAX which has been replaced by CYC_MAX
// 2 was PIT_MAX which has been replaced by CYC_MAX
// @Param: COL_MIN
// @DisplayName: Collective Pitch Minimum
// @Description: Lowest possible servo position in PWM microseconds for the swashplate
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("COL_MIN", 3, AP_MotorsHeli, _collective_min, AP_MOTORS_HELI_COLLECTIVE_MIN),
// @Param: COL_MAX
// @DisplayName: Collective Pitch Maximum
// @Description: Highest possible servo position in PWM microseconds for the swashplate
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("COL_MAX", 4, AP_MotorsHeli, _collective_max, AP_MOTORS_HELI_COLLECTIVE_MAX),
// @Param: COL_MID
// @DisplayName: Collective Pitch Mid-Point
// @Description: Swash servo position in PWM microseconds corresponding to zero collective pitch (or zero lift for Asymmetrical blades)
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("COL_MID", 5, AP_MotorsHeli, _collective_mid, AP_MOTORS_HELI_COLLECTIVE_MID),
// @Param: SV_MAN
// @DisplayName: Manual Servo Mode
// @Description: Manual servo override for swash set-up. Do not set this manually!
// @Values: 0:Disabled,1:Passthrough,2:Max collective,3:Mid collective,4:Min collective
// @User: Standard
AP_GROUPINFO("SV_MAN", 6, AP_MotorsHeli, _servo_mode, SERVO_CONTROL_MODE_AUTOMATED),
// indices 7 and 8 were RSC parameters which were moved to RSC library. Do not use these indices in the future.
// index 9 was LAND_COL_MIN. Do not use this index in the future.
// indices 10-13 were RSC parameters which were moved to RSC library. Do not use these indices in the future.
// index 14 was RSC_POWER_LOW. Do not use this index in the future.
// index 15 was RSC_POWER_HIGH. Do not use this index in the future.
// @Param: CYC_MAX
// @DisplayName: Cyclic Pitch Angle Max
// @Description: Maximum pitch angle of the swash plate
// @Range: 0 18000
// @Units: cdeg
// @Increment: 100
// @User: Advanced
AP_GROUPINFO("CYC_MAX", 16, AP_MotorsHeli, _cyclic_max, AP_MOTORS_HELI_SWASH_CYCLIC_MAX),
// @Param: SV_TEST
// @DisplayName: Boot-up Servo Test Cycles
// @Description: Number of cycles to run servo test on boot-up
// @Range: 0 10
// @Increment: 1
// @User: Standard
AP_GROUPINFO("SV_TEST", 17, AP_MotorsHeli, _servo_test, 0),
// index 18 was RSC_POWER_NEGC. Do not use this index in the future.
// index 19 was RSC_SLEWRATE and was moved to RSC library. Do not use this index in the future.
// indices 20 to 24 was throttle curve. Do not use this index in the future.
// @Group: RSC_
// @Path: AP_MotorsHeli_RSC.cpp
AP_SUBGROUPINFO(_main_rotor, "RSC_", 25, AP_MotorsHeli, AP_MotorsHeli_RSC),
AP_GROUPEND
};
//
// public methods
//
// init
void AP_MotorsHeli::init(motor_frame_class frame_class, motor_frame_type frame_type)
{
// remember frame class and type
_frame_type = frame_type;
_frame_class = frame_class;
// set update rate
set_update_rate(_speed_hz);
// load boot-up servo test cycles into counter to be consumed
_servo_test_cycle_counter = _servo_test;
// ensure inputs are not passed through to servos on start-up
_servo_mode = SERVO_CONTROL_MODE_AUTOMATED;
// initialise radio passthrough for collective to middle
_throttle_radio_passthrough = 0.5f;
// initialise Servo/PWM ranges and endpoints
if (!init_outputs()) {
// don't set initialised_ok
return;
}
// calculate all scalars
calculate_scalars();
// record successful initialisation if what we setup was the desired frame_class
_flags.initialised_ok = (frame_class == MOTOR_FRAME_HELI);
// set flag to true so targets are initialized once aircraft is armed for first time
_heliflags.init_targets_on_arming = true;
}
// set frame class (i.e. quad, hexa, heli) and type (i.e. x, plus)
void AP_MotorsHeli::set_frame_class_and_type(motor_frame_class frame_class, motor_frame_type frame_type)
{
_flags.initialised_ok = (frame_class == MOTOR_FRAME_HELI);
}
// output_min - sets servos to neutral point with motors stopped
void AP_MotorsHeli::output_min()
{
// move swash to mid
move_actuators(0.0f,0.0f,0.5f,0.0f);
update_motor_control(ROTOR_CONTROL_STOP);
// override limits flags
limit.roll = true;
limit.pitch = true;
limit.yaw = true;
limit.throttle_lower = true;
limit.throttle_upper = false;
}
// output - sends commands to the servos
void AP_MotorsHeli::output()
{
// update throttle filter
update_throttle_filter();
// run spool logic
output_logic();
if (_flags.armed) {
calculate_armed_scalars();
if (!_flags.interlock) {
output_armed_zero_throttle();
} else {
output_armed_stabilizing();
}
} else {
output_disarmed();
}
output_to_motors();
};
// sends commands to the motors
void AP_MotorsHeli::output_armed_stabilizing()
{
// if manual override active after arming, deactivate it and reinitialize servos
if (_servo_mode != SERVO_CONTROL_MODE_AUTOMATED) {
reset_flight_controls();
}
move_actuators(_roll_in, _pitch_in, get_throttle(), _yaw_in);
}
// output_armed_zero_throttle - sends commands to the motors
void AP_MotorsHeli::output_armed_zero_throttle()
{
// if manual override active after arming, deactivate it and reinitialize servos
if (_servo_mode != SERVO_CONTROL_MODE_AUTOMATED) {
reset_flight_controls();
}
move_actuators(_roll_in, _pitch_in, get_throttle(), _yaw_in);
}
// output_disarmed - sends commands to the motors
void AP_MotorsHeli::output_disarmed()
{
if (_servo_test_cycle_counter > 0){
// perform boot-up servo test cycle if enabled
servo_test();
} else {
// manual override (i.e. when setting up swash)
switch (_servo_mode) {
case SERVO_CONTROL_MODE_MANUAL_PASSTHROUGH:
// pass pilot commands straight through to swash
_roll_in = _roll_radio_passthrough;
_pitch_in = _pitch_radio_passthrough;
_throttle_filter.reset(_throttle_radio_passthrough);
_yaw_in = _yaw_radio_passthrough;
break;
case SERVO_CONTROL_MODE_MANUAL_CENTER:
// fixate mid collective
_roll_in = 0.0f;
_pitch_in = 0.0f;
_throttle_filter.reset(_collective_mid_pct);
_yaw_in = 0.0f;
break;
case SERVO_CONTROL_MODE_MANUAL_MAX:
// fixate max collective
_roll_in = 0.0f;
_pitch_in = 0.0f;
_throttle_filter.reset(1.0f);
if (_frame_class == MOTOR_FRAME_HELI_DUAL ||
_frame_class == MOTOR_FRAME_HELI_QUAD) {
_yaw_in = 0;
} else {
_yaw_in = 1;
}
break;
case SERVO_CONTROL_MODE_MANUAL_MIN:
// fixate min collective
_roll_in = 0.0f;
_pitch_in = 0.0f;
_throttle_filter.reset(0.0f);
if (_frame_class == MOTOR_FRAME_HELI_DUAL ||
_frame_class == MOTOR_FRAME_HELI_QUAD) {
_yaw_in = 0;
} else {
_yaw_in = -1;
}
break;
case SERVO_CONTROL_MODE_MANUAL_OSCILLATE:
// use servo_test function from child classes
servo_test();
break;
default:
// no manual override
break;
}
}
// ensure swash servo endpoints haven't been moved
init_outputs();
// continuously recalculate scalars to allow setup
calculate_scalars();
// helicopters always run stabilizing flight controls
move_actuators(_roll_in, _pitch_in, get_throttle(), _yaw_in);
}
// run spool logic
void AP_MotorsHeli::output_logic()
{
// force desired and current spool mode if disarmed and armed with interlock enabled
if (_flags.armed) {
if (!_flags.interlock) {
_spool_desired = DesiredSpoolState::GROUND_IDLE;
} else {
_heliflags.init_targets_on_arming = false;
}
} else {
_heliflags.init_targets_on_arming = true;
_spool_desired = DesiredSpoolState::SHUT_DOWN;
_spool_state = SpoolState::SHUT_DOWN;
}
switch (_spool_state) {
case SpoolState::SHUT_DOWN:
// Motors should be stationary.
// Servos set to their trim values or in a test condition.
// make sure the motors are spooling in the correct direction
if (_spool_desired != DesiredSpoolState::SHUT_DOWN) {
_spool_state = SpoolState::GROUND_IDLE;
break;
}
break;
case SpoolState::GROUND_IDLE: {
// Motors should be stationary or at ground idle.
// Servos should be moving to correct the current attitude.
if (_spool_desired == DesiredSpoolState::SHUT_DOWN){
_spool_state = SpoolState::SHUT_DOWN;
} else if(_spool_desired == DesiredSpoolState::THROTTLE_UNLIMITED) {
_spool_state = SpoolState::SPOOLING_UP;
} else { // _spool_desired == GROUND_IDLE
}
break;
}
case SpoolState::SPOOLING_UP:
// Maximum throttle should move from minimum to maximum.
// Servos should exhibit normal flight behavior.
// make sure the motors are spooling in the correct direction
if (_spool_desired != DesiredSpoolState::THROTTLE_UNLIMITED ){
_spool_state = SpoolState::SPOOLING_DOWN;
break;
}
if (_heliflags.rotor_runup_complete){
_spool_state = SpoolState::THROTTLE_UNLIMITED;
}
break;
case SpoolState::THROTTLE_UNLIMITED:
// Throttle should exhibit normal flight behavior.
// Servos should exhibit normal flight behavior.
// make sure the motors are spooling in the correct direction
if (_spool_desired != DesiredSpoolState::THROTTLE_UNLIMITED) {
_spool_state = SpoolState::SPOOLING_DOWN;
break;
}
break;
case SpoolState::SPOOLING_DOWN:
// Maximum throttle should move from maximum to minimum.
// Servos should exhibit normal flight behavior.
// make sure the motors are spooling in the correct direction
if (_spool_desired == DesiredSpoolState::THROTTLE_UNLIMITED) {
_spool_state = SpoolState::SPOOLING_UP;
break;
}
if (!rotor_speed_above_critical()){
_spool_state = SpoolState::GROUND_IDLE;
}
break;
}
}
// parameter_check - check if helicopter specific parameters are sensible
bool AP_MotorsHeli::parameter_check(bool display_msg) const
{
// returns false if RSC Mode is not set to a valid control mode
if (_main_rotor._rsc_mode.get() <= (int8_t)ROTOR_CONTROL_MODE_DISABLED || _main_rotor._rsc_mode.get() > (int8_t)ROTOR_CONTROL_MODE_CLOSED_LOOP_POWER_OUTPUT) {
if (display_msg) {
gcs().send_text(MAV_SEVERITY_CRITICAL, "PreArm: H_RSC_MODE invalid");
}
return false;
}
// returns false if rsc_setpoint is out of range
if ( _main_rotor._rsc_setpoint.get() > 100 || _main_rotor._rsc_setpoint.get() < 10){
if (display_msg) {
gcs().send_text(MAV_SEVERITY_CRITICAL, "PreArm: H_RSC_SETPOINT out of range");
}
return false;
}
// returns false if idle output is out of range
if ( _main_rotor._idle_output.get() > 100 || _main_rotor._idle_output.get() < 0){
if (display_msg) {
gcs().send_text(MAV_SEVERITY_CRITICAL, "PreArm: H_RSC_IDLE out of range");
}
return false;
}
// returns false if _rsc_critical is not between 0 and 100
if (_main_rotor._critical_speed.get() > 100 || _main_rotor._critical_speed.get() < 0) {
if (display_msg) {
gcs().send_text(MAV_SEVERITY_CRITICAL, "PreArm: H_RSC_CRITICAL out of range");
}
return false;
}
// returns false if RSC Runup Time is less than Ramp time as this could cause undesired behaviour of rotor speed estimate
if (_main_rotor._runup_time.get() <= _main_rotor._ramp_time.get()){
if (display_msg) {
gcs().send_text(MAV_SEVERITY_CRITICAL, "PreArm: H_RUNUP_TIME too small");
}
return false;
}
// all other cases parameters are OK
return true;
}
// reset_swash_servo
void AP_MotorsHeli::reset_swash_servo(SRV_Channel::Aux_servo_function_t function)
{
// outputs are defined on a -500 to 500 range for swash servos
SRV_Channels::set_range(function, 1000);
// swash servos always use full endpoints as restricting them would lead to scaling errors
SRV_Channels::set_output_min_max(function, 1000, 2000);
}
// update the throttle input filter
void AP_MotorsHeli::update_throttle_filter()
{
_throttle_filter.apply(_throttle_in, 1.0f/_loop_rate);
// constrain filtered throttle
if (_throttle_filter.get() < 0.0f) {
_throttle_filter.reset(0.0f);
}
if (_throttle_filter.get() > 1.0f) {
_throttle_filter.reset(1.0f);
}
}
// reset_flight_controls - resets all controls and scalars to flight status
void AP_MotorsHeli::reset_flight_controls()
{
_servo_mode = SERVO_CONTROL_MODE_AUTOMATED;
init_outputs();
calculate_scalars();
}
// convert input in -1 to +1 range to pwm output for swashplate servo.
// The value 0 corresponds to the trim value of the servo. Swashplate
// servo travel range is fixed to 1000 pwm and therefore the input is
// multiplied by 500 to get PWM output.
void AP_MotorsHeli::rc_write_swash(uint8_t chan, float swash_in)
{
uint16_t pwm = (uint16_t)(1500 + 500 * swash_in);
SRV_Channel::Aux_servo_function_t function = SRV_Channels::get_motor_function(chan);
SRV_Channels::set_output_pwm_trimmed(function, pwm);
}