ardupilot/ArduCopter/Attitude.pde
Jason Short 43b3e1ccd1 ACM -
Implemented automatic ranging of Alt Hold gains. Works well in simulator and testing.
- alt hold estimation moved to 50 hz
- simple fixed observer calc for smooth and accurate climb rates useful for derivative calcs
- auto-reset of the I term by moving I value into throttle value. This recalcs the gain every 20seconds for battery drainage compensation in long flights.
- remove filtering for Nav_throttle
- added a way to lower the gain on nav_throttle for descents by / climb_rate error by 2 - seems to work OK and keeps copter from dropping like a rock when the Baro drifts quickly lower.
- removed old throttle hold set point code
- made throttle override for alt hold +- 200 vs 250
2012-03-06 22:22:14 -08:00

553 lines
13 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
static int16_t
get_stabilize_roll(int32_t target_angle)
{
// angle error
target_angle = wrap_180(target_angle - dcm.roll_sensor);
#if FRAME_CONFIG == HELI_FRAME
// limit the error we're feeding to the PID
target_angle = constrain(target_angle, -4500, 4500);
// convert to desired Rate:
target_angle = g.pi_stabilize_roll.get_pi(target_angle, G_Dt);
// output control:
return constrain(target_angle, -4500, 4500);
#else
// limit the error we're feeding to the PID
target_angle = constrain(target_angle, -2500, 2500);
// convert to desired Rate:
int32_t target_rate = g.pi_stabilize_roll.get_p(target_angle);
int16_t iterm = g.pi_stabilize_roll.get_i(target_angle, G_Dt);
return get_rate_roll(target_rate) + iterm;
#endif
}
static int16_t
get_stabilize_pitch(int32_t target_angle)
{
// angle error
target_angle = wrap_180(target_angle - dcm.pitch_sensor);
#if FRAME_CONFIG == HELI_FRAME
// limit the error we're feeding to the PID
target_angle = constrain(target_angle, -4500, 4500);
// convert to desired Rate:
target_angle = g.pi_stabilize_pitch.get_pi(target_angle, G_Dt);
// output control:
return constrain(target_angle, -4500, 4500);
#else
// limit the error we're feeding to the PID
target_angle = constrain(target_angle, -2500, 2500);
// conver to desired Rate:
int32_t target_rate = g.pi_stabilize_pitch.get_p(target_angle);
int16_t iterm = g.pi_stabilize_pitch.get_i(target_angle, G_Dt);
return get_rate_pitch(target_rate) + iterm;
#endif
}
static int16_t
get_stabilize_yaw(int32_t target_angle)
{
// angle error
target_angle = wrap_180(target_angle - dcm.yaw_sensor);
#if FRAME_CONFIG == HELI_FRAME // cannot use rate control for helicopters
// limit the error we're feeding to the PID
target_angle = constrain(target_angle, -4500, 4500);
#else
// limit the error we're feeding to the PID
target_angle = constrain(target_angle, -2000, 2000);
#endif
// conver to desired Rate:
int32_t target_rate = g.pi_stabilize_yaw.get_p(target_angle);
int16_t iterm = g.pi_stabilize_yaw.get_i(target_angle, G_Dt);
#if FRAME_CONFIG == HELI_FRAME // cannot use rate control for helicopters
if(!g.heli_ext_gyro_enabled){
return get_rate_yaw(target_rate) + iterm;
}else{
return constrain((target_rate + iterm), -4500, 4500);
}
#else
return get_rate_yaw(target_rate) + iterm;
#endif
}
static int16_t
get_acro_roll(int32_t target_rate)
{
target_rate = target_rate * g.acro_p;
target_rate = constrain(target_rate, -10000, 10000);
return get_rate_roll(target_rate);
}
static int16_t
get_acro_pitch(int32_t target_rate)
{
target_rate = target_rate * g.acro_p;
target_rate = constrain(target_rate, -10000, 10000);
return get_rate_pitch(target_rate);
}
static int16_t
get_acro_yaw(int32_t target_rate)
{
target_rate = g.pi_stabilize_yaw.get_p(target_rate);
target_rate = constrain(target_rate, -15000, 15000);
return get_rate_yaw(target_rate);
}
static int16_t
get_rate_roll(int32_t target_rate)
{
static int32_t last_rate = 0; // previous iterations rate
int32_t current_rate; // this iteration's rate
int32_t rate_d; // roll's acceleration
int32_t output; // output from pid controller
int32_t rate_d_dampener; // value to dampen output based on acceleration
// get current rate
current_rate = (omega.x * DEGX100);
// calculate and filter the acceleration
rate_d = roll_rate_d_filter.apply(current_rate - last_rate);
// store rate for next iteration
last_rate = current_rate;
// call pid controller
output = g.pid_rate_roll.get_pid(target_rate - current_rate, G_Dt);
// Dampening output with D term
rate_d_dampener = rate_d * roll_scale_d;
rate_d_dampener = constrain(rate_d_dampener, -400, 400);
output -= rate_d_dampener;
// output control
return constrain(output, -2500, 2500);
}
static int16_t
get_rate_pitch(int32_t target_rate)
{
static int32_t last_rate = 0; // previous iterations rate
int32_t current_rate; // this iteration's rate
int32_t rate_d; // roll's acceleration
int32_t output; // output from pid controller
int32_t rate_d_dampener; // value to dampen output based on acceleration
// get current rate
current_rate = (omega.y * DEGX100);
// calculate and filter the acceleration
rate_d = pitch_rate_d_filter.apply(current_rate - last_rate);
// store rate for next iteration
last_rate = current_rate;
// call pid controller
output = g.pid_rate_pitch.get_pid(target_rate - current_rate, G_Dt);
// Dampening output with D term
rate_d_dampener = rate_d * pitch_scale_d;
rate_d_dampener = constrain(rate_d_dampener, -400, 400);
output -= rate_d_dampener;
// output control
return constrain(output, -2500, 2500);
}
static int16_t
get_rate_yaw(int32_t target_rate)
{
// rate control
target_rate = target_rate - (omega.z * DEGX100);
target_rate = g.pid_rate_yaw.get_pid(target_rate, G_Dt);
// output control:
int16_t yaw_limit = 1400 + abs(g.rc_4.control_in);
// smoother Yaw control:
return constrain(target_rate, -yaw_limit, yaw_limit);
}
static int16_t
get_nav_throttle(int32_t z_error)
{
//static int16_t old_output = 0;
int16_t rate_error = 0;
int16_t output = 0;
// convert to desired Rate:
rate_error = g.pi_alt_hold.get_p(z_error);
rate_error = constrain(rate_error, -150, 150);
// limit error to prevent I term wind up
z_error = constrain(z_error, -400, 400);
// compensates throttle setpoint error for hovering
int16_t iterm = g.pi_alt_hold.get_i(z_error, .02);
// calculate rate error
rate_error = rate_error - climb_rate;
// hack to see if we can smooth out oscillations
if(rate_error < 0)
rate_error = rate_error >> 1;
// limit the rate
output = constrain(g.pid_throttle.get_pid(rate_error, .02), -80, 120);
// light filter of output
//output = (old_output + output) / 2;
// save our output
//old_output = output;
// output control:
return output + iterm;
}
// Keeps old data out of our calculation / logs
static void reset_nav_params(void)
{
nav_throttle = 0;
// always start Circle mode at same angle
circle_angle = 0;
// We must be heading to a new WP, so XTrack must be 0
crosstrack_error = 0;
// Will be set by new command
target_bearing = 0;
// Will be set by new command
wp_distance = 0;
// Will be set by new command, used by loiter
long_error = 0;
lat_error = 0;
// Will be set by new command, used by loiter
next_WP.alt = 0;
// We want to by default pass WPs
slow_wp = false;
}
/*
reset all I integrators
*/
static void reset_I_all(void)
{
reset_rate_I();
reset_stability_I();
reset_nav_I();
reset_wind_I();
reset_throttle_I();
reset_optflow_I();
// This is the only place we reset Yaw
g.pi_stabilize_yaw.reset_I();
}
static void reset_rate_I()
{
g.pid_rate_roll.reset_I();
g.pid_rate_pitch.reset_I();
g.pid_rate_yaw.reset_I();
}
static void reset_optflow_I(void)
{
g.pid_optflow_roll.reset_I();
g.pid_optflow_pitch.reset_I();
of_roll = 0;
of_pitch = 0;
}
static void reset_wind_I(void)
{
// Wind Compensation
g.pi_loiter_lat.reset_I();
g.pi_loiter_lon.reset_I();
}
static void reset_nav_I(void)
{
// Rate control for WP navigation
g.pid_nav_lat.reset_I();
g.pid_nav_lon.reset_I();
}
static void reset_throttle_I(void)
{
// For Altitude Hold
g.pi_alt_hold.reset_I();
g.pid_throttle.reset_I();
}
static void reset_stability_I(void)
{
// Used to balance a quad
// This only needs to be reset during Auto-leveling in flight
g.pi_stabilize_roll.reset_I();
g.pi_stabilize_pitch.reset_I();
}
/*************************************************************
throttle control
****************************************************************/
static long
get_nav_yaw_offset(int yaw_input, int reset)
{
int32_t _yaw;
if(reset == 0){
// we are on the ground
return dcm.yaw_sensor;
}else{
// re-define nav_yaw if we have stick input
if(yaw_input != 0){
// set nav_yaw + or - the current location
_yaw = yaw_input + dcm.yaw_sensor;
// we need to wrap our value so we can be 0 to 360 (*100)
return wrap_360(_yaw);
}else{
// no stick input, lets not change nav_yaw
return nav_yaw;
}
}
}
static int16_t get_angle_boost(int16_t value)
{
float temp = cos_pitch_x * cos_roll_x;
temp = 1.0 - constrain(temp, .5, 1.0);
int16_t output = temp * value;
return constrain(output, 0, 200);
// return (int)(temp * value);
}
#define NUM_G_SAMPLES 40
#if ACCEL_ALT_HOLD == 2
// z -14.4306 = going up
// z -6.4306 = going down
static int get_z_damping()
{
int output;
Z_integrator += get_world_Z_accel() - Z_offset;
output = Z_integrator * 3;
Z_integrator = Z_integrator * .8;
output = constrain(output, -100, 100);
return output;
}
float get_world_Z_accel()
{
accels_rot = dcm.get_dcm_matrix() * imu.get_accel();
//Serial.printf("z %1.4f\n", accels_rot.z);
return accels_rot.z;
}
static void init_z_damper()
{
Z_offset = 0;
for (int i = 0; i < NUM_G_SAMPLES; i++){
delay(5);
read_AHRS();
Z_offset += get_world_Z_accel();
}
Z_offset /= (float)NUM_G_SAMPLES;
}
// Accelerometer Z dampening by Aurelio R. Ramos
// ---------------------------------------------
#elif ACCEL_ALT_HOLD == 1
// contains G and any other DC offset
static float estimatedAccelOffset = 0;
// state
static float synVelo = 0;
static float synPos = 0;
static float synPosFiltered = 0;
static float posError = 0;
static float prevSensedPos = 0;
// tuning for dead reckoning
static const float dt_50hz = 0.02;
static float synPosP = 10 * dt_50hz;
static float synPosI = 15 * dt_50hz;
static float synVeloP = 1.5 * dt_50hz;
static float maxVeloCorrection = 5 * dt_50hz;
static float maxSensedVelo = 1;
static float synPosFilter = 0.5;
// Z damping term.
static float fullDampP = 0.100;
float get_world_Z_accel()
{
accels_rot = dcm.get_dcm_matrix() * imu.get_accel();
return accels_rot.z;
}
static void init_z_damper()
{
estimatedAccelOffset = 0;
for (int i = 0; i < NUM_G_SAMPLES; i++){
delay(5);
read_AHRS();
estimatedAccelOffset += get_world_Z_accel();
}
estimatedAccelOffset /= (float)NUM_G_SAMPLES;
}
float dead_reckon_Z(float sensedPos, float sensedAccel)
{
// the following algorithm synthesizes position and velocity from
// a noisy altitude and accelerometer data.
// synthesize uncorrected velocity by integrating acceleration
synVelo += (sensedAccel - estimatedAccelOffset) * dt_50hz;
// synthesize uncorrected position by integrating uncorrected velocity
synPos += synVelo * dt_50hz;
// filter synPos, the better this filter matches the filtering and dead time
// of the sensed position, the less the position estimate will lag.
synPosFiltered = synPosFiltered * (1 - synPosFilter) + synPos * synPosFilter;
// calculate error against sensor position
posError = sensedPos - synPosFiltered;
// correct altitude
synPos += synPosP * posError;
// correct integrated velocity by posError
synVelo = synVelo + constrain(posError, -maxVeloCorrection, maxVeloCorrection) * synPosI;
// correct integrated velocity by the sensed position delta in a small proportion
// (i.e., the low frequency of the delta)
float sensedVelo = (sensedPos - prevSensedPos) / dt_50hz;
synVelo += constrain(sensedVelo - synVelo, -maxSensedVelo, maxSensedVelo) * synVeloP;
prevSensedPos = sensedPos;
return synVelo;
}
static int get_z_damping()
{
float sensedAccel = get_world_Z_accel();
float sensedPos = current_loc.alt / 100.0;
float synVelo = dead_reckon_Z(sensedPos, sensedAccel);
return constrain(fullDampP * synVelo * (-1), -300, 300);
}
#else
static int get_z_damping()
{
return 0;
}
static void init_z_damper()
{
}
#endif
// calculate modified roll/pitch depending upon optical flow calculated position
static int32_t
get_of_roll(int32_t control_roll)
{
#ifdef OPTFLOW_ENABLED
static float tot_x_cm = 0; // total distance from target
static uint32_t last_of_roll_update = 0;
int32_t new_roll = 0;
// check if new optflow data available
if( optflow.last_update != last_of_roll_update) {
last_of_roll_update = optflow.last_update;
// add new distance moved
tot_x_cm += optflow.x_cm;
// only stop roll if caller isn't modifying roll
if( control_roll == 0 && current_loc.alt < 1500) {
new_roll = g.pid_optflow_roll.get_pid(-tot_x_cm, 1.0); // we could use the last update time to calculate the time change
}else{
g.pid_optflow_roll.reset_I();
tot_x_cm = 0;
}
// limit amount of change and maximum angle
of_roll = constrain(new_roll, (of_roll-20), (of_roll+20));
}
// limit max angle
of_roll = constrain(of_roll, -1000, 1000);
return control_roll+of_roll;
#else
return control_roll;
#endif
}
static int32_t
get_of_pitch(int32_t control_pitch)
{
#ifdef OPTFLOW_ENABLED
static float tot_y_cm = 0; // total distance from target
static uint32_t last_of_pitch_update = 0;
int32_t new_pitch = 0;
// check if new optflow data available
if( optflow.last_update != last_of_pitch_update ) {
last_of_pitch_update = optflow.last_update;
// add new distance moved
tot_y_cm += optflow.y_cm;
// only stop roll if caller isn't modifying pitch
if( control_pitch == 0 && current_loc.alt < 1500 ) {
new_pitch = g.pid_optflow_pitch.get_pid(tot_y_cm, 1.0); // we could use the last update time to calculate the time change
}else{
tot_y_cm = 0;
g.pid_optflow_pitch.reset_I();
}
// limit amount of change
of_pitch = constrain(new_pitch, (of_pitch-20), (of_pitch+20));
}
// limit max angle
of_pitch = constrain(of_pitch, -1000, 1000);
return control_pitch+of_pitch;
#else
return control_pitch;
#endif
}