mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-18 06:38:29 -04:00
1097 lines
33 KiB
C++
1097 lines
33 KiB
C++
/*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2014 Pavel Kirienko
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
* this software and associated documentation files (the "Software"), to deal in
|
|
* the Software without restriction, including without limitation the rights to
|
|
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
|
* the Software, and to permit persons to whom the Software is furnished to do so,
|
|
* subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
|
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
|
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
|
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
/*
|
|
* This file is free software: you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This file is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
* See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Code by Siddharth Bharat Purohit
|
|
*/
|
|
|
|
#include <hal.h>
|
|
#include "AP_HAL_ChibiOS.h"
|
|
|
|
#if HAL_NUM_CAN_IFACES
|
|
#include <cassert>
|
|
#include <cstring>
|
|
#include <AP_Math/AP_Math.h>
|
|
# include <hal.h>
|
|
#include <AP_CANManager/AP_CANManager.h>
|
|
#include <AP_Common/ExpandingString.h>
|
|
|
|
# if !defined(STM32H7XX) && !defined(STM32G4)
|
|
#include "CANIface.h"
|
|
|
|
/* STM32F3's only CAN inteface does not have a number. */
|
|
#if defined(STM32F3XX)
|
|
#define RCC_APB1ENR_CAN1EN RCC_APB1ENR_CANEN
|
|
#define RCC_APB1RSTR_CAN1RST RCC_APB1RSTR_CANRST
|
|
#define CAN1_TX_IRQn CAN_TX_IRQn
|
|
#define CAN1_RX0_IRQn CAN_RX0_IRQn
|
|
#define CAN1_RX1_IRQn CAN_RX1_IRQn
|
|
#define CAN1_TX_IRQ_Handler STM32_CAN1_TX_HANDLER
|
|
#define CAN1_RX0_IRQ_Handler STM32_CAN1_RX0_HANDLER
|
|
#define CAN1_RX1_IRQ_Handler STM32_CAN1_RX1_HANDLER
|
|
#else
|
|
#define CAN1_TX_IRQ_Handler STM32_CAN1_TX_HANDLER
|
|
#define CAN1_RX0_IRQ_Handler STM32_CAN1_RX0_HANDLER
|
|
#define CAN1_RX1_IRQ_Handler STM32_CAN1_RX1_HANDLER
|
|
#define CAN2_TX_IRQ_Handler STM32_CAN2_TX_HANDLER
|
|
#define CAN2_RX0_IRQ_Handler STM32_CAN2_RX0_HANDLER
|
|
#define CAN2_RX1_IRQ_Handler STM32_CAN2_RX1_HANDLER
|
|
#endif // #if defined(STM32F3XX)
|
|
|
|
#if HAL_CANMANAGER_ENABLED
|
|
#define Debug(fmt, args...) do { AP::can().log_text(AP_CANManager::LOG_DEBUG, "CANIface", fmt, ##args); } while (0)
|
|
#else
|
|
#define Debug(fmt, args...)
|
|
#endif
|
|
|
|
#if !defined(HAL_BOOTLOADER_BUILD)
|
|
#define PERF_STATS(x) (x++)
|
|
#else
|
|
#define PERF_STATS(x)
|
|
#endif
|
|
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
using namespace ChibiOS;
|
|
|
|
constexpr bxcan::CanType* const CANIface::Can[];
|
|
static ChibiOS::CANIface* can_ifaces[HAL_NUM_CAN_IFACES];
|
|
|
|
uint8_t CANIface::next_interface;
|
|
|
|
// mapping from logical interface to physical. First physical is 0, first logical is 0
|
|
static constexpr uint8_t can_interfaces[HAL_NUM_CAN_IFACES] = { HAL_CAN_INTERFACE_LIST };
|
|
|
|
// mapping from physical interface back to logical. First physical is 0, first logical is 0
|
|
static constexpr int8_t can_iface_to_idx[3] = { HAL_CAN_INTERFACE_REV_LIST };
|
|
|
|
static inline void handleTxInterrupt(uint8_t phys_index)
|
|
{
|
|
const int8_t iface_index = can_iface_to_idx[phys_index];
|
|
if (iface_index < 0 || iface_index >= HAL_NUM_CAN_IFACES) {
|
|
return;
|
|
}
|
|
uint64_t precise_time = AP_HAL::micros64();
|
|
if (precise_time > 0) {
|
|
precise_time--;
|
|
}
|
|
if (can_ifaces[iface_index] != nullptr) {
|
|
can_ifaces[iface_index]->handleTxInterrupt(precise_time);
|
|
}
|
|
}
|
|
|
|
static inline void handleRxInterrupt(uint8_t phys_index, uint8_t fifo_index)
|
|
{
|
|
const int8_t iface_index = can_iface_to_idx[phys_index];
|
|
if (iface_index < 0 || iface_index >= HAL_NUM_CAN_IFACES) {
|
|
return;
|
|
}
|
|
uint64_t precise_time = AP_HAL::micros64();
|
|
if (precise_time > 0) {
|
|
precise_time--;
|
|
}
|
|
if (can_ifaces[iface_index] != nullptr) {
|
|
can_ifaces[iface_index]->handleRxInterrupt(fifo_index, precise_time);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* CANIface
|
|
*/
|
|
const uint32_t CANIface::TSR_ABRQx[CANIface::NumTxMailboxes] = {
|
|
bxcan::TSR_ABRQ0,
|
|
bxcan::TSR_ABRQ1,
|
|
bxcan::TSR_ABRQ2
|
|
};
|
|
|
|
|
|
CANIface::CANIface(uint8_t index) :
|
|
rx_bytebuffer_((uint8_t*)rx_buffer, sizeof(rx_buffer)),
|
|
rx_queue_(&rx_bytebuffer_),
|
|
self_index_(index)
|
|
{
|
|
if (index >= HAL_NUM_CAN_IFACES) {
|
|
AP_HAL::panic("Bad CANIface index.");
|
|
} else {
|
|
can_ = Can[index];
|
|
}
|
|
}
|
|
|
|
// constructor suitable for array
|
|
CANIface::CANIface() :
|
|
CANIface(next_interface++)
|
|
{}
|
|
|
|
bool CANIface::computeTimings(uint32_t target_bitrate, Timings& out_timings)
|
|
{
|
|
if (target_bitrate < 1) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Hardware configuration
|
|
*/
|
|
const uint32_t pclk = STM32_PCLK1;
|
|
|
|
static const int MaxBS1 = 16;
|
|
static const int MaxBS2 = 8;
|
|
|
|
/*
|
|
* Ref. "Automatic Baudrate Detection in CANopen Networks", U. Koppe, MicroControl GmbH & Co. KG
|
|
* CAN in Automation, 2003
|
|
*
|
|
* According to the source, optimal quanta per bit are:
|
|
* Bitrate Optimal Maximum
|
|
* 1000 kbps 8 10
|
|
* 500 kbps 16 17
|
|
* 250 kbps 16 17
|
|
* 125 kbps 16 17
|
|
*/
|
|
const int max_quanta_per_bit = (target_bitrate >= 1000000) ? 10 : 17;
|
|
|
|
static const int MaxSamplePointLocation = 900;
|
|
|
|
/*
|
|
* Computing (prescaler * BS):
|
|
* BITRATE = 1 / (PRESCALER * (1 / PCLK) * (1 + BS1 + BS2)) -- See the Reference Manual
|
|
* BITRATE = PCLK / (PRESCALER * (1 + BS1 + BS2)) -- Simplified
|
|
* let:
|
|
* BS = 1 + BS1 + BS2 -- Number of time quanta per bit
|
|
* PRESCALER_BS = PRESCALER * BS
|
|
* ==>
|
|
* PRESCALER_BS = PCLK / BITRATE
|
|
*/
|
|
const uint32_t prescaler_bs = pclk / target_bitrate;
|
|
|
|
/*
|
|
* Searching for such prescaler value so that the number of quanta per bit is highest.
|
|
*/
|
|
uint8_t bs1_bs2_sum = uint8_t(max_quanta_per_bit - 1);
|
|
|
|
while ((prescaler_bs % (1 + bs1_bs2_sum)) != 0) {
|
|
if (bs1_bs2_sum <= 2) {
|
|
return false; // No solution
|
|
}
|
|
bs1_bs2_sum--;
|
|
}
|
|
|
|
const uint32_t prescaler = prescaler_bs / (1 + bs1_bs2_sum);
|
|
if ((prescaler < 1U) || (prescaler > 1024U)) {
|
|
return false; // No solution
|
|
}
|
|
|
|
/*
|
|
* Now we have a constraint: (BS1 + BS2) == bs1_bs2_sum.
|
|
* We need to find the values so that the sample point is as close as possible to the optimal value.
|
|
*
|
|
* Solve[(1 + bs1)/(1 + bs1 + bs2) == 7/8, bs2] (* Where 7/8 is 0.875, the recommended sample point location *)
|
|
* {{bs2 -> (1 + bs1)/7}}
|
|
*
|
|
* Hence:
|
|
* bs2 = (1 + bs1) / 7
|
|
* bs1 = (7 * bs1_bs2_sum - 1) / 8
|
|
*
|
|
* Sample point location can be computed as follows:
|
|
* Sample point location = (1 + bs1) / (1 + bs1 + bs2)
|
|
*
|
|
* Since the optimal solution is so close to the maximum, we prepare two solutions, and then pick the best one:
|
|
* - With rounding to nearest
|
|
* - With rounding to zero
|
|
*/
|
|
struct BsPair {
|
|
uint8_t bs1;
|
|
uint8_t bs2;
|
|
uint16_t sample_point_permill;
|
|
|
|
BsPair() :
|
|
bs1(0),
|
|
bs2(0),
|
|
sample_point_permill(0)
|
|
{ }
|
|
|
|
BsPair(uint8_t bs1_bs2_sum, uint8_t arg_bs1) :
|
|
bs1(arg_bs1),
|
|
bs2(uint8_t(bs1_bs2_sum - bs1)),
|
|
sample_point_permill(uint16_t(1000 * (1 + bs1) / (1 + bs1 + bs2)))
|
|
{}
|
|
|
|
bool isValid() const
|
|
{
|
|
return (bs1 >= 1) && (bs1 <= MaxBS1) && (bs2 >= 1) && (bs2 <= MaxBS2);
|
|
}
|
|
};
|
|
|
|
// First attempt with rounding to nearest
|
|
BsPair solution(bs1_bs2_sum, uint8_t(((7 * bs1_bs2_sum - 1) + 4) / 8));
|
|
|
|
if (solution.sample_point_permill > MaxSamplePointLocation) {
|
|
// Second attempt with rounding to zero
|
|
solution = BsPair(bs1_bs2_sum, uint8_t((7 * bs1_bs2_sum - 1) / 8));
|
|
}
|
|
|
|
/*
|
|
* Final validation
|
|
* Helpful Python:
|
|
* def sample_point_from_btr(x):
|
|
* assert 0b0011110010000000111111000000000 & x == 0
|
|
* ts2,ts1,brp = (x>>20)&7, (x>>16)&15, x&511
|
|
* return (1+ts1+1)/(1+ts1+1+ts2+1)
|
|
*
|
|
*/
|
|
if ((target_bitrate != (pclk / (prescaler * (1 + solution.bs1 + solution.bs2)))) || !solution.isValid()) {
|
|
return false;
|
|
}
|
|
|
|
Debug("Timings: quanta/bit: %d, sample point location: %.1f%%",
|
|
int(1 + solution.bs1 + solution.bs2), float(solution.sample_point_permill) / 10.F);
|
|
|
|
out_timings.prescaler = uint16_t(prescaler - 1U);
|
|
out_timings.sjw = 0; // Which means one
|
|
out_timings.bs1 = uint8_t(solution.bs1 - 1);
|
|
out_timings.bs2 = uint8_t(solution.bs2 - 1);
|
|
return true;
|
|
}
|
|
|
|
int16_t CANIface::send(const AP_HAL::CANFrame& frame, uint64_t tx_deadline,
|
|
CanIOFlags flags)
|
|
{
|
|
if (frame.isErrorFrame() || frame.dlc > 8) {
|
|
return -1;
|
|
}
|
|
PERF_STATS(stats.tx_requests);
|
|
|
|
/*
|
|
* Normally we should perform the same check as in @ref canAcceptNewTxFrame(), because
|
|
* it is possible that the highest-priority frame between select() and send() could have been
|
|
* replaced with a lower priority one due to TX timeout. But we don't do this check because:
|
|
*
|
|
* - It is a highly unlikely scenario.
|
|
*
|
|
* - Frames do not timeout on a properly functioning bus. Since frames do not timeout, the new
|
|
* frame can only have higher priority, which doesn't break the logic.
|
|
*
|
|
* - If high-priority frames are timing out in the TX queue, there's probably a lot of other
|
|
* issues to take care of before this one becomes relevant.
|
|
*
|
|
* - It takes CPU time. Not just CPU time, but critical section time, which is expensive.
|
|
*/
|
|
|
|
{
|
|
CriticalSectionLocker lock;
|
|
|
|
/*
|
|
* Seeking for an empty slot
|
|
*/
|
|
uint8_t txmailbox = 0xFF;
|
|
if ((can_->TSR & bxcan::TSR_TME0) == bxcan::TSR_TME0) {
|
|
txmailbox = 0;
|
|
} else if ((can_->TSR & bxcan::TSR_TME1) == bxcan::TSR_TME1) {
|
|
txmailbox = 1;
|
|
} else if ((can_->TSR & bxcan::TSR_TME2) == bxcan::TSR_TME2) {
|
|
txmailbox = 2;
|
|
} else {
|
|
PERF_STATS(stats.tx_overflow);
|
|
#if !defined(HAL_BOOTLOADER_BUILD)
|
|
if (stats.tx_success == 0) {
|
|
/*
|
|
if we have never successfully transmitted a frame
|
|
then we may be operating with just MAVCAN or UDP
|
|
MCAST. Consider the frame sent if the send
|
|
succeeds. This allows for UDP MCAST and MAVCAN to
|
|
operate fully when the CAN bus has no cable plugged
|
|
in
|
|
*/
|
|
return AP_HAL::CANIface::send(frame, tx_deadline, flags);
|
|
}
|
|
#endif
|
|
return 0; // No transmission for you.
|
|
}
|
|
|
|
/*
|
|
* Setting up the mailbox
|
|
*/
|
|
bxcan::TxMailboxType& mb = can_->TxMailbox[txmailbox];
|
|
if (frame.isExtended()) {
|
|
mb.TIR = ((frame.id & AP_HAL::CANFrame::MaskExtID) << 3) | bxcan::TIR_IDE;
|
|
} else {
|
|
mb.TIR = ((frame.id & AP_HAL::CANFrame::MaskStdID) << 21);
|
|
}
|
|
|
|
if (frame.isRemoteTransmissionRequest()) {
|
|
mb.TIR |= bxcan::TIR_RTR;
|
|
}
|
|
|
|
mb.TDTR = frame.dlc;
|
|
|
|
mb.TDHR = frame.data_32[1];
|
|
mb.TDLR = frame.data_32[0];
|
|
|
|
mb.TIR |= bxcan::TIR_TXRQ; // Go.
|
|
|
|
/*
|
|
* Registering the pending transmission so we can track its deadline and loopback it as needed
|
|
*/
|
|
CanTxItem& txi = pending_tx_[txmailbox];
|
|
txi.deadline = tx_deadline;
|
|
txi.frame = frame;
|
|
txi.loopback = (flags & Loopback) != 0;
|
|
txi.abort_on_error = (flags & AbortOnError) != 0;
|
|
// setup frame initial state
|
|
txi.pushed = false;
|
|
}
|
|
|
|
// also send on MAVCAN, but don't consider it an error if we can't send
|
|
AP_HAL::CANIface::send(frame, tx_deadline, flags);
|
|
|
|
return 1;
|
|
}
|
|
|
|
int16_t CANIface::receive(AP_HAL::CANFrame& out_frame, uint64_t& out_timestamp_us, CanIOFlags& out_flags)
|
|
{
|
|
{
|
|
CriticalSectionLocker lock;
|
|
CanRxItem rx_item;
|
|
if (!rx_queue_.pop(rx_item)) {
|
|
return 0;
|
|
}
|
|
out_frame = rx_item.frame;
|
|
out_timestamp_us = rx_item.timestamp_us;
|
|
out_flags = rx_item.flags;
|
|
}
|
|
|
|
return AP_HAL::CANIface::receive(out_frame, out_timestamp_us, out_flags);
|
|
}
|
|
|
|
#if !defined(HAL_BOOTLOADER_BUILD)
|
|
bool CANIface::configureFilters(const CanFilterConfig* filter_configs,
|
|
uint16_t num_configs)
|
|
{
|
|
#if !defined(HAL_BUILD_AP_PERIPH)
|
|
// only do filtering for AP_Periph
|
|
can_->FMR &= ~bxcan::FMR_FINIT;
|
|
return true;
|
|
#else
|
|
if (mode_ != FilteredMode) {
|
|
return false;
|
|
}
|
|
if (num_configs <= NumFilters && filter_configs != nullptr) {
|
|
CriticalSectionLocker lock;
|
|
|
|
can_->FMR |= bxcan::FMR_FINIT;
|
|
|
|
// Slave (CAN2) gets half of the filters
|
|
can_->FMR &= ~0x00003F00UL;
|
|
can_->FMR |= static_cast<uint32_t>(NumFilters) << 8;
|
|
|
|
can_->FFA1R = 0x0AAAAAAA; // FIFO's are interleaved between filters
|
|
can_->FM1R = 0; // Identifier Mask mode
|
|
can_->FS1R = 0x7ffffff; // Single 32-bit for all
|
|
|
|
const uint8_t filter_start_index = (self_index_ == 0) ? 0 : NumFilters;
|
|
|
|
if (num_configs == 0) {
|
|
can_->FilterRegister[filter_start_index].FR1 = 0;
|
|
can_->FilterRegister[filter_start_index].FR2 = 0;
|
|
can_->FA1R = 1 << filter_start_index;
|
|
} else {
|
|
for (uint8_t i = 0; i < NumFilters; i++) {
|
|
if (i < num_configs) {
|
|
uint32_t id = 0;
|
|
uint32_t mask = 0;
|
|
|
|
const CanFilterConfig* const cfg = filter_configs + i;
|
|
|
|
if ((cfg->id & AP_HAL::CANFrame::FlagEFF) || !(cfg->mask & AP_HAL::CANFrame::FlagEFF)) {
|
|
id = (cfg->id & AP_HAL::CANFrame::MaskExtID) << 3;
|
|
mask = (cfg->mask & AP_HAL::CANFrame::MaskExtID) << 3;
|
|
id |= bxcan::RIR_IDE;
|
|
} else {
|
|
id = (cfg->id & AP_HAL::CANFrame::MaskStdID) << 21; // Regular std frames, nothing fancy.
|
|
mask = (cfg->mask & AP_HAL::CANFrame::MaskStdID) << 21; // Boring.
|
|
}
|
|
|
|
if (cfg->id & AP_HAL::CANFrame::FlagRTR) {
|
|
id |= bxcan::RIR_RTR;
|
|
}
|
|
|
|
if (cfg->mask & AP_HAL::CANFrame::FlagEFF) {
|
|
mask |= bxcan::RIR_IDE;
|
|
}
|
|
|
|
if (cfg->mask & AP_HAL::CANFrame::FlagRTR) {
|
|
mask |= bxcan::RIR_RTR;
|
|
}
|
|
|
|
can_->FilterRegister[filter_start_index + i].FR1 = id;
|
|
can_->FilterRegister[filter_start_index + i].FR2 = mask;
|
|
|
|
can_->FA1R |= (1 << (filter_start_index + i));
|
|
} else {
|
|
can_->FA1R &= ~(1 << (filter_start_index + i));
|
|
}
|
|
}
|
|
}
|
|
|
|
can_->FMR &= ~bxcan::FMR_FINIT;
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
#endif // AP_Periph
|
|
}
|
|
#endif
|
|
|
|
bool CANIface::waitMsrINakBitStateChange(bool target_state)
|
|
{
|
|
const unsigned Timeout = 1000;
|
|
for (unsigned wait_ack = 0; wait_ack < Timeout; wait_ack++) {
|
|
const bool state = (can_->MSR & bxcan::MSR_INAK) != 0;
|
|
if (state == target_state) {
|
|
return true;
|
|
}
|
|
chThdSleep(chTimeMS2I(1));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void CANIface::handleTxMailboxInterrupt(uint8_t mailbox_index, bool txok, const uint64_t timestamp_us)
|
|
{
|
|
if (mailbox_index > NumTxMailboxes) {
|
|
return;
|
|
}
|
|
|
|
had_activity_ = had_activity_ || txok;
|
|
|
|
CanTxItem& txi = pending_tx_[mailbox_index];
|
|
|
|
if (txi.loopback && txok && !txi.pushed) {
|
|
CanRxItem rx_item;
|
|
rx_item.frame = txi.frame;
|
|
rx_item.timestamp_us = timestamp_us;
|
|
rx_item.flags = AP_HAL::CANIface::Loopback;
|
|
add_to_rx_queue(rx_item);
|
|
}
|
|
|
|
if (txok && !txi.pushed) {
|
|
txi.pushed = true;
|
|
PERF_STATS(stats.tx_success);
|
|
#if !defined(HAL_BOOTLOADER_BUILD)
|
|
stats.last_transmit_us = timestamp_us;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void CANIface::handleTxInterrupt(const uint64_t utc_usec)
|
|
{
|
|
// TXOK == false means that there was a hardware failure
|
|
if (can_->TSR & bxcan::TSR_RQCP0) {
|
|
const bool txok = can_->TSR & bxcan::TSR_TXOK0;
|
|
can_->TSR = bxcan::TSR_RQCP0;
|
|
handleTxMailboxInterrupt(0, txok, utc_usec);
|
|
}
|
|
if (can_->TSR & bxcan::TSR_RQCP1) {
|
|
const bool txok = can_->TSR & bxcan::TSR_TXOK1;
|
|
can_->TSR = bxcan::TSR_RQCP1;
|
|
handleTxMailboxInterrupt(1, txok, utc_usec);
|
|
}
|
|
if (can_->TSR & bxcan::TSR_RQCP2) {
|
|
const bool txok = can_->TSR & bxcan::TSR_TXOK2;
|
|
can_->TSR = bxcan::TSR_RQCP2;
|
|
handleTxMailboxInterrupt(2, txok, utc_usec);
|
|
}
|
|
|
|
if (sem_handle != nullptr) {
|
|
PERF_STATS(stats.num_events);
|
|
sem_handle->signal_ISR();
|
|
}
|
|
|
|
pollErrorFlagsFromISR();
|
|
}
|
|
|
|
void CANIface::handleRxInterrupt(uint8_t fifo_index, uint64_t timestamp_us)
|
|
{
|
|
volatile uint32_t* const rfr_reg = (fifo_index == 0) ? &can_->RF0R : &can_->RF1R;
|
|
if ((*rfr_reg & bxcan::RFR_FMP_MASK) == 0) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Register overflow as a hardware error
|
|
*/
|
|
if ((*rfr_reg & bxcan::RFR_FOVR) != 0) {
|
|
PERF_STATS(stats.rx_errors);
|
|
}
|
|
|
|
/*
|
|
* Read the frame contents
|
|
*/
|
|
AP_HAL::CANFrame &frame = isr_rx_frame;
|
|
const bxcan::RxMailboxType& rf = can_->RxMailbox[fifo_index];
|
|
|
|
if ((rf.RIR & bxcan::RIR_IDE) == 0) {
|
|
frame.id = AP_HAL::CANFrame::MaskStdID & (rf.RIR >> 21);
|
|
} else {
|
|
frame.id = AP_HAL::CANFrame::MaskExtID & (rf.RIR >> 3);
|
|
frame.id |= AP_HAL::CANFrame::FlagEFF;
|
|
}
|
|
|
|
if ((rf.RIR & bxcan::RIR_RTR) != 0) {
|
|
frame.id |= AP_HAL::CANFrame::FlagRTR;
|
|
}
|
|
|
|
frame.dlc = rf.RDTR & 15;
|
|
|
|
frame.data[0] = uint8_t(0xFF & (rf.RDLR >> 0));
|
|
frame.data[1] = uint8_t(0xFF & (rf.RDLR >> 8));
|
|
frame.data[2] = uint8_t(0xFF & (rf.RDLR >> 16));
|
|
frame.data[3] = uint8_t(0xFF & (rf.RDLR >> 24));
|
|
frame.data[4] = uint8_t(0xFF & (rf.RDHR >> 0));
|
|
frame.data[5] = uint8_t(0xFF & (rf.RDHR >> 8));
|
|
frame.data[6] = uint8_t(0xFF & (rf.RDHR >> 16));
|
|
frame.data[7] = uint8_t(0xFF & (rf.RDHR >> 24));
|
|
|
|
*rfr_reg = bxcan::RFR_RFOM | bxcan::RFR_FOVR | bxcan::RFR_FULL; // Release FIFO entry we just read
|
|
|
|
/*
|
|
* Store with timeout into the FIFO buffer and signal update event
|
|
*/
|
|
CanRxItem &rx_item = isr_rx_item;
|
|
rx_item.frame = frame;
|
|
rx_item.timestamp_us = timestamp_us;
|
|
rx_item.flags = 0;
|
|
if (add_to_rx_queue(rx_item)) {
|
|
PERF_STATS(stats.rx_received);
|
|
} else {
|
|
PERF_STATS(stats.rx_overflow);
|
|
}
|
|
|
|
had_activity_ = true;
|
|
|
|
if (sem_handle != nullptr) {
|
|
PERF_STATS(stats.num_events);
|
|
sem_handle->signal_ISR();
|
|
}
|
|
|
|
pollErrorFlagsFromISR();
|
|
}
|
|
|
|
void CANIface::pollErrorFlagsFromISR()
|
|
{
|
|
const uint8_t lec = uint8_t((can_->ESR & bxcan::ESR_LEC_MASK) >> bxcan::ESR_LEC_SHIFT);
|
|
if (lec != 0) {
|
|
#if !defined(HAL_BUILD_AP_PERIPH) && !defined(HAL_BOOTLOADER_BUILD)
|
|
stats.esr = can_->ESR; // Record error status
|
|
#endif
|
|
can_->ESR = 0;
|
|
|
|
// Serving abort requests
|
|
for (int i = 0; i < NumTxMailboxes; i++) {
|
|
CanTxItem& txi = pending_tx_[i];
|
|
if (txi.aborted && txi.abort_on_error) {
|
|
can_->TSR = TSR_ABRQx[i];
|
|
txi.aborted = true;
|
|
PERF_STATS(stats.tx_abort);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CANIface::discardTimedOutTxMailboxes(uint64_t current_time)
|
|
{
|
|
CriticalSectionLocker lock;
|
|
for (int i = 0; i < NumTxMailboxes; i++) {
|
|
CanTxItem& txi = pending_tx_[i];
|
|
if (txi.aborted || !txi.setup) {
|
|
continue;
|
|
}
|
|
if (txi.deadline < current_time) {
|
|
can_->TSR = TSR_ABRQx[i]; // Goodnight sweet transmission
|
|
pending_tx_[i].aborted = true;
|
|
PERF_STATS(stats.tx_timedout);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CANIface::clear_rx()
|
|
{
|
|
CriticalSectionLocker lock;
|
|
rx_queue_.clear();
|
|
}
|
|
|
|
void CANIface::pollErrorFlags()
|
|
{
|
|
CriticalSectionLocker cs_locker;
|
|
pollErrorFlagsFromISR();
|
|
}
|
|
|
|
bool CANIface::canAcceptNewTxFrame(const AP_HAL::CANFrame& frame) const
|
|
{
|
|
/*
|
|
* We can accept more frames only if the following conditions are satisfied:
|
|
* - There is at least one TX mailbox free (obvious enough);
|
|
* - The priority of the new frame is higher than priority of all TX mailboxes.
|
|
*/
|
|
{
|
|
static const uint32_t TME = bxcan::TSR_TME0 | bxcan::TSR_TME1 | bxcan::TSR_TME2;
|
|
const uint32_t tme = can_->TSR & TME;
|
|
|
|
if (tme == TME) { // All TX mailboxes are free (as in freedom).
|
|
return true;
|
|
}
|
|
|
|
if (tme == 0) { // All TX mailboxes are busy transmitting.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The second condition requires a critical section.
|
|
*/
|
|
CriticalSectionLocker lock;
|
|
|
|
for (int mbx = 0; mbx < NumTxMailboxes; mbx++) {
|
|
if (!(pending_tx_[mbx].pushed || pending_tx_[mbx].aborted) && !frame.priorityHigherThan(pending_tx_[mbx].frame)) {
|
|
return false; // There's a mailbox whose priority is higher or equal the priority of the new frame.
|
|
}
|
|
}
|
|
|
|
return true; // This new frame will be added to a free TX mailbox in the next @ref send().
|
|
}
|
|
|
|
bool CANIface::isRxBufferEmpty() const
|
|
{
|
|
CriticalSectionLocker lock;
|
|
return rx_queue_.available() == 0;
|
|
}
|
|
|
|
#if !defined(HAL_BUILD_AP_PERIPH) && !defined(HAL_BOOTLOADER_BUILD)
|
|
uint32_t CANIface::getErrorCount() const
|
|
{
|
|
CriticalSectionLocker lock;
|
|
return stats.num_busoff_err +
|
|
stats.rx_errors +
|
|
stats.rx_overflow +
|
|
stats.tx_rejected +
|
|
stats.tx_abort +
|
|
stats.tx_timedout;
|
|
}
|
|
|
|
#endif // #if !defined(HAL_BUILD_AP_PERIPH) && !defined(HAL_BOOTLOADER_BUILD)
|
|
|
|
bool CANIface::set_event_handle(AP_HAL::BinarySemaphore *handle)
|
|
{
|
|
sem_handle = handle;
|
|
return true;
|
|
}
|
|
|
|
|
|
void CANIface::checkAvailable(bool& read, bool& write, const AP_HAL::CANFrame* pending_tx) const
|
|
{
|
|
write = false;
|
|
read = !isRxBufferEmpty();
|
|
|
|
if (pending_tx != nullptr) {
|
|
write = canAcceptNewTxFrame(*pending_tx);
|
|
}
|
|
}
|
|
|
|
bool CANIface::select(bool &read, bool &write,
|
|
const AP_HAL::CANFrame* pending_tx,
|
|
uint64_t blocking_deadline)
|
|
{
|
|
const bool in_read = read;
|
|
const bool in_write= write;
|
|
uint64_t time = AP_HAL::micros64();
|
|
|
|
if (!read && !write) {
|
|
//invalid request
|
|
return false;
|
|
}
|
|
|
|
discardTimedOutTxMailboxes(time); // Check TX timeouts - this may release some TX slots
|
|
pollErrorFlags();
|
|
|
|
checkAvailable(read, write, pending_tx); // Check if we already have some of the requested events
|
|
if ((read && in_read) || (write && in_write)) {
|
|
return true;
|
|
}
|
|
|
|
#if !defined(HAL_BUILD_AP_PERIPH) && !defined(HAL_BOOTLOADER_BUILD)
|
|
// we don't support blocking select in AP_Periph and bootloader
|
|
while (time < blocking_deadline) {
|
|
if (sem_handle == nullptr) {
|
|
break;
|
|
}
|
|
IGNORE_RETURN(sem_handle->wait(blocking_deadline - time)); // Block until timeout expires or any iface updates
|
|
checkAvailable(read, write, pending_tx); // Check what we got
|
|
if ((read && in_read) || (write && in_write)) {
|
|
return true;
|
|
}
|
|
time = AP_HAL::micros64();
|
|
}
|
|
#endif // #if !defined(HAL_BUILD_AP_PERIPH) && !defined(HAL_BOOTLOADER_BUILD)
|
|
return true;
|
|
}
|
|
|
|
void CANIface::initOnce(bool enable_irq)
|
|
{
|
|
/*
|
|
* CAN1, CAN2
|
|
*/
|
|
{
|
|
CriticalSectionLocker lock;
|
|
switch (can_interfaces[self_index_]) {
|
|
case 0:
|
|
#if defined(RCC_APB1ENR1_CAN1EN)
|
|
RCC->APB1ENR1 |= RCC_APB1ENR1_CAN1EN;
|
|
RCC->APB1RSTR1 |= RCC_APB1RSTR1_CAN1RST;
|
|
RCC->APB1RSTR1 &= ~RCC_APB1RSTR1_CAN1RST;
|
|
#else
|
|
RCC->APB1ENR |= RCC_APB1ENR_CAN1EN;
|
|
RCC->APB1RSTR |= RCC_APB1RSTR_CAN1RST;
|
|
RCC->APB1RSTR &= ~RCC_APB1RSTR_CAN1RST;
|
|
#endif
|
|
break;
|
|
#if defined(RCC_APB1ENR1_CAN2EN)
|
|
case 1:
|
|
RCC->APB1ENR1 |= RCC_APB1ENR1_CAN2EN;
|
|
RCC->APB1RSTR1 |= RCC_APB1RSTR1_CAN2RST;
|
|
RCC->APB1RSTR1 &= ~RCC_APB1RSTR1_CAN2RST;
|
|
break;
|
|
#elif defined(RCC_APB1ENR_CAN2EN)
|
|
case 1:
|
|
RCC->APB1ENR |= RCC_APB1ENR_CAN2EN;
|
|
RCC->APB1RSTR |= RCC_APB1RSTR_CAN2RST;
|
|
RCC->APB1RSTR &= ~RCC_APB1RSTR_CAN2RST;
|
|
break;
|
|
#endif
|
|
#ifdef RCC_APB1ENR_CAN3EN
|
|
case 2:
|
|
RCC->APB1ENR |= RCC_APB1ENR_CAN3EN;
|
|
RCC->APB1RSTR |= RCC_APB1RSTR_CAN3RST;
|
|
RCC->APB1RSTR &= ~RCC_APB1RSTR_CAN3RST;
|
|
break;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
* IRQ
|
|
*/
|
|
if (!irq_init_ && enable_irq) {
|
|
CriticalSectionLocker lock;
|
|
switch (can_interfaces[self_index_]) {
|
|
case 0:
|
|
#ifdef HAL_CAN_IFACE1_ENABLE
|
|
nvicEnableVector(CAN1_TX_IRQn, CORTEX_MAX_KERNEL_PRIORITY);
|
|
nvicEnableVector(CAN1_RX0_IRQn, CORTEX_MAX_KERNEL_PRIORITY);
|
|
nvicEnableVector(CAN1_RX1_IRQn, CORTEX_MAX_KERNEL_PRIORITY);
|
|
#endif
|
|
break;
|
|
case 1:
|
|
#ifdef HAL_CAN_IFACE2_ENABLE
|
|
nvicEnableVector(CAN2_TX_IRQn, CORTEX_MAX_KERNEL_PRIORITY);
|
|
nvicEnableVector(CAN2_RX0_IRQn, CORTEX_MAX_KERNEL_PRIORITY);
|
|
nvicEnableVector(CAN2_RX1_IRQn, CORTEX_MAX_KERNEL_PRIORITY);
|
|
#endif
|
|
break;
|
|
case 2:
|
|
#ifdef HAL_CAN_IFACE3_ENABLE
|
|
nvicEnableVector(CAN3_TX_IRQn, CORTEX_MAX_KERNEL_PRIORITY);
|
|
nvicEnableVector(CAN3_RX0_IRQn, CORTEX_MAX_KERNEL_PRIORITY);
|
|
nvicEnableVector(CAN3_RX1_IRQn, CORTEX_MAX_KERNEL_PRIORITY);
|
|
#endif
|
|
break;
|
|
}
|
|
irq_init_ = true;
|
|
}
|
|
}
|
|
|
|
bool CANIface::init(const uint32_t bitrate, const CANIface::OperatingMode mode)
|
|
{
|
|
Debug("Bitrate %lu mode %d", static_cast<unsigned long>(bitrate), static_cast<int>(mode));
|
|
if (self_index_ > HAL_NUM_CAN_IFACES) {
|
|
Debug("CAN drv init failed");
|
|
return false;
|
|
}
|
|
if (can_ifaces[self_index_] == nullptr) {
|
|
can_ifaces[self_index_] = this;
|
|
#if !defined(HAL_BOOTLOADER_BUILD)
|
|
AP_HAL::get_HAL_mutable().can[self_index_] = this;
|
|
#endif
|
|
}
|
|
|
|
bitrate_ = bitrate;
|
|
mode_ = mode;
|
|
|
|
if (can_ifaces[0] == nullptr) {
|
|
can_ifaces[0] = NEW_NOTHROW CANIface(0);
|
|
Debug("Failed to allocate CAN iface 0");
|
|
if (can_ifaces[0] == nullptr) {
|
|
return false;
|
|
}
|
|
}
|
|
if (self_index_ == 1 && !can_ifaces[0]->is_initialized()) {
|
|
Debug("Iface 0 is not initialized yet but we need it for Iface 1, trying to init it");
|
|
Debug("Enabling CAN iface 0");
|
|
can_ifaces[0]->initOnce(false);
|
|
Debug("Initing iface 0...");
|
|
if (!can_ifaces[0]->init(bitrate, mode)) {
|
|
Debug("Iface 0 init failed");
|
|
return false;
|
|
}
|
|
|
|
Debug("Enabling CAN iface");
|
|
}
|
|
initOnce(true);
|
|
/*
|
|
* We need to silence the controller in the first order, otherwise it may interfere with the following operations.
|
|
*/
|
|
{
|
|
CriticalSectionLocker lock;
|
|
|
|
can_->MCR &= ~bxcan::MCR_SLEEP; // Exit sleep mode
|
|
can_->MCR |= bxcan::MCR_INRQ; // Request init
|
|
|
|
can_->IER = 0; // Disable interrupts while initialization is in progress
|
|
}
|
|
|
|
if (!waitMsrINakBitStateChange(true)) {
|
|
Debug("MSR INAK not set");
|
|
can_->MCR = bxcan::MCR_RESET;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Object state - interrupts are disabled, so it's safe to modify it now
|
|
*/
|
|
rx_queue_.clear();
|
|
|
|
for (uint32_t i=0; i < NumTxMailboxes; i++) {
|
|
pending_tx_[i] = CanTxItem();
|
|
}
|
|
had_activity_ = false;
|
|
|
|
/*
|
|
* CAN timings for this bitrate
|
|
*/
|
|
Timings timings;
|
|
if (!computeTimings(bitrate, timings)) {
|
|
can_->MCR = bxcan::MCR_RESET;
|
|
return false;
|
|
}
|
|
Debug("Timings: presc=%u sjw=%u bs1=%u bs2=%u",
|
|
unsigned(timings.prescaler), unsigned(timings.sjw), unsigned(timings.bs1), unsigned(timings.bs2));
|
|
|
|
/*
|
|
* Hardware initialization (the hardware has already confirmed initialization mode, see above)
|
|
*/
|
|
can_->MCR = bxcan::MCR_ABOM | bxcan::MCR_AWUM | bxcan::MCR_INRQ; // RM page 648
|
|
|
|
can_->BTR = ((timings.sjw & 3U) << 24) |
|
|
((timings.bs1 & 15U) << 16) |
|
|
((timings.bs2 & 7U) << 20) |
|
|
(timings.prescaler & 1023U) |
|
|
((mode == SilentMode) ? bxcan::BTR_SILM : 0);
|
|
|
|
can_->IER = bxcan::IER_TMEIE | // TX mailbox empty
|
|
bxcan::IER_FMPIE0 | // RX FIFO 0 is not empty
|
|
bxcan::IER_FMPIE1; // RX FIFO 1 is not empty
|
|
|
|
can_->MCR &= ~bxcan::MCR_INRQ; // Leave init mode
|
|
|
|
if (!waitMsrINakBitStateChange(false)) {
|
|
Debug("MSR INAK not cleared");
|
|
can_->MCR = bxcan::MCR_RESET;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Default filter configuration
|
|
*/
|
|
if (self_index_ == 0) {
|
|
can_->FMR |= bxcan::FMR_FINIT;
|
|
|
|
can_->FMR &= 0xFFFFC0F1;
|
|
can_->FMR |= static_cast<uint32_t>(NumFilters) << 8; // Slave (CAN2) gets half of the filters
|
|
|
|
can_->FFA1R = 0; // All assigned to FIFO0 by default
|
|
can_->FM1R = 0; // Indentifier Mask mode
|
|
|
|
#if HAL_NUM_CAN_IFACES > 1
|
|
can_->FS1R = 0x7ffffff; // Single 32-bit for all
|
|
can_->FilterRegister[0].FR1 = 0; // CAN1 accepts everything
|
|
can_->FilterRegister[0].FR2 = 0;
|
|
can_->FilterRegister[NumFilters].FR1 = 0; // CAN2 accepts everything
|
|
can_->FilterRegister[NumFilters].FR2 = 0;
|
|
can_->FA1R = 1 | (1 << NumFilters); // One filter per each iface
|
|
#else
|
|
can_->FS1R = 0x1fff;
|
|
can_->FilterRegister[0].FR1 = 0;
|
|
can_->FilterRegister[0].FR2 = 0;
|
|
can_->FA1R = 1;
|
|
#endif
|
|
|
|
can_->FMR &= ~bxcan::FMR_FINIT;
|
|
}
|
|
initialised_ = true;
|
|
|
|
return true;
|
|
}
|
|
|
|
#if !defined(HAL_BUILD_AP_PERIPH) && !defined(HAL_BOOTLOADER_BUILD)
|
|
void CANIface::get_stats(ExpandingString &str)
|
|
{
|
|
CriticalSectionLocker lock;
|
|
str.printf("tx_requests: %lu\n"
|
|
"tx_rejected: %lu\n"
|
|
"tx_success: %lu\n"
|
|
"tx_timedout: %lu\n"
|
|
"tx_abort: %lu\n"
|
|
"rx_received: %lu\n"
|
|
"rx_overflow: %lu\n"
|
|
"rx_errors: %lu\n"
|
|
"num_busoff_err: %lu\n"
|
|
"num_events: %lu\n"
|
|
"ESR: %lx\n",
|
|
stats.tx_requests,
|
|
stats.tx_rejected,
|
|
stats.tx_success,
|
|
stats.tx_timedout,
|
|
stats.tx_abort,
|
|
stats.rx_received,
|
|
stats.rx_overflow,
|
|
stats.rx_errors,
|
|
stats.num_busoff_err,
|
|
stats.num_events,
|
|
stats.esr);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Interrupt handlers
|
|
*/
|
|
extern "C"
|
|
{
|
|
#ifdef HAL_CAN_IFACE1_ENABLE
|
|
// CAN1
|
|
CH_IRQ_HANDLER(CAN1_TX_IRQ_Handler);
|
|
CH_IRQ_HANDLER(CAN1_TX_IRQ_Handler)
|
|
{
|
|
CH_IRQ_PROLOGUE();
|
|
handleTxInterrupt(0);
|
|
CH_IRQ_EPILOGUE();
|
|
}
|
|
|
|
CH_IRQ_HANDLER(CAN1_RX0_IRQ_Handler);
|
|
CH_IRQ_HANDLER(CAN1_RX0_IRQ_Handler)
|
|
{
|
|
CH_IRQ_PROLOGUE();
|
|
handleRxInterrupt(0, 0);
|
|
CH_IRQ_EPILOGUE();
|
|
}
|
|
|
|
CH_IRQ_HANDLER(CAN1_RX1_IRQ_Handler);
|
|
CH_IRQ_HANDLER(CAN1_RX1_IRQ_Handler)
|
|
{
|
|
CH_IRQ_PROLOGUE();
|
|
handleRxInterrupt(0, 1);
|
|
CH_IRQ_EPILOGUE();
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAL_CAN_IFACE2_ENABLE
|
|
// CAN2
|
|
CH_IRQ_HANDLER(CAN2_TX_IRQ_Handler);
|
|
CH_IRQ_HANDLER(CAN2_TX_IRQ_Handler)
|
|
{
|
|
CH_IRQ_PROLOGUE();
|
|
handleTxInterrupt(1);
|
|
CH_IRQ_EPILOGUE();
|
|
}
|
|
|
|
CH_IRQ_HANDLER(CAN2_RX0_IRQ_Handler);
|
|
CH_IRQ_HANDLER(CAN2_RX0_IRQ_Handler)
|
|
{
|
|
CH_IRQ_PROLOGUE();
|
|
handleRxInterrupt(1, 0);
|
|
CH_IRQ_EPILOGUE();
|
|
}
|
|
|
|
CH_IRQ_HANDLER(CAN2_RX1_IRQ_Handler);
|
|
CH_IRQ_HANDLER(CAN2_RX1_IRQ_Handler)
|
|
{
|
|
CH_IRQ_PROLOGUE();
|
|
handleRxInterrupt(1, 1);
|
|
CH_IRQ_EPILOGUE();
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAL_CAN_IFACE3_ENABLE
|
|
// CAN3
|
|
CH_IRQ_HANDLER(CAN3_TX_IRQ_Handler);
|
|
CH_IRQ_HANDLER(CAN3_TX_IRQ_Handler)
|
|
{
|
|
CH_IRQ_PROLOGUE();
|
|
handleTxInterrupt(2);
|
|
CH_IRQ_EPILOGUE();
|
|
}
|
|
|
|
CH_IRQ_HANDLER(CAN3_RX0_IRQ_Handler);
|
|
CH_IRQ_HANDLER(CAN3_RX0_IRQ_Handler)
|
|
{
|
|
CH_IRQ_PROLOGUE();
|
|
handleRxInterrupt(2, 0);
|
|
CH_IRQ_EPILOGUE();
|
|
}
|
|
|
|
CH_IRQ_HANDLER(CAN3_RX1_IRQ_Handler);
|
|
CH_IRQ_HANDLER(CAN3_RX1_IRQ_Handler)
|
|
{
|
|
CH_IRQ_PROLOGUE();
|
|
handleRxInterrupt(2, 1);
|
|
CH_IRQ_EPILOGUE();
|
|
}
|
|
#endif
|
|
|
|
} // extern "C"
|
|
|
|
#endif //!defined(STM32H7XX)
|
|
|
|
#endif //HAL_NUM_CAN_IFACES
|