mirror of https://github.com/ArduPilot/ardupilot
710 lines
17 KiB
Plaintext
710 lines
17 KiB
Plaintext
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#if CLI_ENABLED == ENABLED
|
|
|
|
// These are function definitions so the Menu can be constructed before the functions
|
|
// are defined below. Order matters to the compiler.
|
|
static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_radio(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_passthru(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_failsafe(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_gps(uint8_t argc, const Menu::arg *argv);
|
|
#if CONFIG_ADC == ENABLED
|
|
static int8_t test_adc(uint8_t argc, const Menu::arg *argv);
|
|
#endif
|
|
static int8_t test_imu(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_battery(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_current(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_relay(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_wp(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_airspeed(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_pressure(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_mag(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_xbee(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_eedump(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_rawgps(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_modeswitch(uint8_t argc, const Menu::arg *argv);
|
|
#if CONFIG_APM_HARDWARE != APM_HARDWARE_APM2
|
|
static int8_t test_dipswitches(uint8_t argc, const Menu::arg *argv);
|
|
#endif
|
|
|
|
// Creates a constant array of structs representing menu options
|
|
// and stores them in Flash memory, not RAM.
|
|
// User enters the string in the console to call the functions on the right.
|
|
// See class Menu in AP_Common for implementation details
|
|
static const struct Menu::command test_menu_commands[] PROGMEM = {
|
|
{"pwm", test_radio_pwm},
|
|
{"radio", test_radio},
|
|
{"passthru", test_passthru},
|
|
{"failsafe", test_failsafe},
|
|
{"battery", test_battery},
|
|
{"relay", test_relay},
|
|
{"waypoints", test_wp},
|
|
{"xbee", test_xbee},
|
|
{"eedump", test_eedump},
|
|
{"modeswitch", test_modeswitch},
|
|
#if CONFIG_APM_HARDWARE != APM_HARDWARE_APM2
|
|
{"dipswitches", test_dipswitches},
|
|
#endif
|
|
|
|
// Tests below here are for hardware sensors only present
|
|
// when real sensors are attached or they are emulated
|
|
#if HIL_MODE == HIL_MODE_DISABLED
|
|
#if CONFIG_ADC == ENABLED
|
|
{"adc", test_adc},
|
|
#endif
|
|
{"gps", test_gps},
|
|
{"rawgps", test_rawgps},
|
|
{"imu", test_imu},
|
|
{"airspeed", test_airspeed},
|
|
{"airpressure", test_pressure},
|
|
{"compass", test_mag},
|
|
{"current", test_current},
|
|
#elif HIL_MODE == HIL_MODE_SENSORS
|
|
{"adc", test_adc},
|
|
{"gps", test_gps},
|
|
{"imu", test_imu},
|
|
{"compass", test_mag},
|
|
#elif HIL_MODE == HIL_MODE_ATTITUDE
|
|
#endif
|
|
|
|
};
|
|
|
|
// A Macro to create the Menu
|
|
MENU(test_menu, "test", test_menu_commands);
|
|
|
|
static int8_t
|
|
test_mode(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
Serial.printf_P(PSTR("Test Mode\n\n"));
|
|
test_menu.run();
|
|
return 0;
|
|
}
|
|
|
|
static void print_hit_enter()
|
|
{
|
|
Serial.printf_P(PSTR("Hit Enter to exit.\n\n"));
|
|
}
|
|
|
|
static int8_t
|
|
test_eedump(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
int i, j;
|
|
|
|
// hexdump the EEPROM
|
|
for (i = 0; i < EEPROM_MAX_ADDR; i += 16) {
|
|
Serial.printf_P(PSTR("%04x:"), i);
|
|
for (j = 0; j < 16; j++)
|
|
Serial.printf_P(PSTR(" %02x"), eeprom_read_byte((const uint8_t *)(i + j)));
|
|
Serial.println();
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
static int8_t
|
|
test_radio_pwm(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
print_hit_enter();
|
|
delay(1000);
|
|
|
|
while(1){
|
|
delay(20);
|
|
|
|
// Filters radio input - adjust filters in the radio.pde file
|
|
// ----------------------------------------------------------
|
|
read_radio();
|
|
|
|
Serial.printf_P(PSTR("IN:\t1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"),
|
|
g.channel_roll.radio_in,
|
|
g.channel_pitch.radio_in,
|
|
g.channel_throttle.radio_in,
|
|
g.channel_rudder.radio_in,
|
|
g.rc_5.radio_in,
|
|
g.rc_6.radio_in,
|
|
g.rc_7.radio_in,
|
|
g.rc_8.radio_in);
|
|
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static int8_t
|
|
test_passthru(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
print_hit_enter();
|
|
delay(1000);
|
|
|
|
while(1){
|
|
delay(20);
|
|
|
|
// New radio frame? (we could use also if((millis()- timer) > 20)
|
|
if (APM_RC.GetState() == 1){
|
|
Serial.print("CH:");
|
|
for(int i = 0; i < 8; i++){
|
|
Serial.print(APM_RC.InputCh(i)); // Print channel values
|
|
Serial.print(",");
|
|
APM_RC.OutputCh(i, APM_RC.InputCh(i)); // Copy input to Servos
|
|
}
|
|
Serial.println();
|
|
}
|
|
if (Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int8_t
|
|
test_radio(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
print_hit_enter();
|
|
delay(1000);
|
|
|
|
#if THROTTLE_REVERSE == 1
|
|
Serial.printf_P(PSTR("Throttle is reversed in config: \n"));
|
|
delay(1000);
|
|
#endif
|
|
|
|
// read the radio to set trims
|
|
// ---------------------------
|
|
trim_radio();
|
|
|
|
while(1){
|
|
delay(20);
|
|
read_radio();
|
|
update_servo_switches();
|
|
|
|
g.channel_roll.calc_pwm();
|
|
g.channel_pitch.calc_pwm();
|
|
g.channel_throttle.calc_pwm();
|
|
g.channel_rudder.calc_pwm();
|
|
|
|
// write out the servo PWM values
|
|
// ------------------------------
|
|
set_servos();
|
|
|
|
Serial.printf_P(PSTR("IN 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"),
|
|
g.channel_roll.control_in,
|
|
g.channel_pitch.control_in,
|
|
g.channel_throttle.control_in,
|
|
g.channel_rudder.control_in,
|
|
g.rc_5.control_in,
|
|
g.rc_6.control_in,
|
|
g.rc_7.control_in,
|
|
g.rc_8.control_in);
|
|
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int8_t
|
|
test_failsafe(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
byte fail_test;
|
|
print_hit_enter();
|
|
for(int i = 0; i < 50; i++){
|
|
delay(20);
|
|
read_radio();
|
|
}
|
|
|
|
// read the radio to set trims
|
|
// ---------------------------
|
|
trim_radio();
|
|
|
|
oldSwitchPosition = readSwitch();
|
|
|
|
Serial.printf_P(PSTR("Unplug battery, throttle in neutral, turn off radio.\n"));
|
|
while(g.channel_throttle.control_in > 0){
|
|
delay(20);
|
|
read_radio();
|
|
}
|
|
|
|
while(1){
|
|
delay(20);
|
|
read_radio();
|
|
|
|
if(g.channel_throttle.control_in > 0){
|
|
Serial.printf_P(PSTR("THROTTLE CHANGED %d \n"), g.channel_throttle.control_in);
|
|
fail_test++;
|
|
}
|
|
|
|
if(oldSwitchPosition != readSwitch()){
|
|
Serial.printf_P(PSTR("CONTROL MODE CHANGED: "));
|
|
Serial.println(flight_mode_strings[readSwitch()]);
|
|
fail_test++;
|
|
}
|
|
|
|
if(g.throttle_fs_enabled && g.channel_throttle.get_failsafe()){
|
|
Serial.printf_P(PSTR("THROTTLE FAILSAFE ACTIVATED: %d, "), g.channel_throttle.radio_in);
|
|
Serial.println(flight_mode_strings[readSwitch()]);
|
|
fail_test++;
|
|
}
|
|
|
|
if(fail_test > 0){
|
|
return (0);
|
|
}
|
|
if(Serial.available() > 0){
|
|
Serial.printf_P(PSTR("LOS caused no change in APM.\n"));
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int8_t
|
|
test_battery(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
if (g.battery_monitoring >=1 && g.battery_monitoring < 4) {
|
|
for (int i = 0; i < 80; i++){ // Need to get many samples for filter to stabilize
|
|
delay(20);
|
|
read_battery();
|
|
}
|
|
Serial.printf_P(PSTR("Volts: 1:%2.2f, 2:%2.2f, 3:%2.2f, 4:%2.2f\n"),
|
|
battery_voltage1,
|
|
battery_voltage2,
|
|
battery_voltage3,
|
|
battery_voltage4);
|
|
} else {
|
|
Serial.printf_P(PSTR("Not enabled\n"));
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int8_t
|
|
test_current(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
if (g.battery_monitoring == 4) {
|
|
print_hit_enter();
|
|
delta_ms_medium_loop = 100;
|
|
|
|
while(1){
|
|
delay(100);
|
|
read_radio();
|
|
read_battery();
|
|
Serial.printf_P(PSTR("V: %4.4f, A: %4.4f, mAh: %4.4f\n"),
|
|
battery_voltage,
|
|
current_amps,
|
|
current_total);
|
|
|
|
// write out the servo PWM values
|
|
// ------------------------------
|
|
set_servos();
|
|
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
} else {
|
|
Serial.printf_P(PSTR("Not enabled\n"));
|
|
return (0);
|
|
}
|
|
|
|
}
|
|
|
|
static int8_t
|
|
test_relay(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
print_hit_enter();
|
|
delay(1000);
|
|
|
|
while(1){
|
|
Serial.printf_P(PSTR("Relay on\n"));
|
|
relay.on();
|
|
delay(3000);
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
|
|
Serial.printf_P(PSTR("Relay off\n"));
|
|
relay.off();
|
|
delay(3000);
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int8_t
|
|
test_wp(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
delay(1000);
|
|
|
|
// save the alitude above home option
|
|
if(g.RTL_altitude < 0){
|
|
Serial.printf_P(PSTR("Hold current altitude\n"));
|
|
}else{
|
|
Serial.printf_P(PSTR("Hold altitude of %dm\n"), (int)g.RTL_altitude/100);
|
|
}
|
|
|
|
Serial.printf_P(PSTR("%d waypoints\n"), (int)g.command_total);
|
|
Serial.printf_P(PSTR("Hit radius: %d\n"), (int)g.waypoint_radius);
|
|
Serial.printf_P(PSTR("Loiter radius: %d\n\n"), (int)g.loiter_radius);
|
|
|
|
for(byte i = 0; i <= g.command_total; i++){
|
|
struct Location temp = get_cmd_with_index(i);
|
|
test_wp_print(&temp, i);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
test_wp_print(struct Location *cmd, byte wp_index)
|
|
{
|
|
Serial.printf_P(PSTR("command #: %d id:%d options:%d p1:%d p2:%ld p3:%ld p4:%ld \n"),
|
|
(int)wp_index,
|
|
(int)cmd->id,
|
|
(int)cmd->options,
|
|
(int)cmd->p1,
|
|
cmd->alt,
|
|
cmd->lat,
|
|
cmd->lng);
|
|
}
|
|
|
|
static int8_t
|
|
test_xbee(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
print_hit_enter();
|
|
delay(1000);
|
|
Serial.printf_P(PSTR("Begin XBee X-CTU Range and RSSI Test:\n"));
|
|
|
|
while(1){
|
|
|
|
if (Serial3.available())
|
|
Serial3.write(Serial3.read());
|
|
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static int8_t
|
|
test_modeswitch(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
print_hit_enter();
|
|
delay(1000);
|
|
|
|
Serial.printf_P(PSTR("Control CH "));
|
|
|
|
Serial.println(FLIGHT_MODE_CHANNEL, DEC);
|
|
|
|
while(1){
|
|
delay(20);
|
|
byte switchPosition = readSwitch();
|
|
if (oldSwitchPosition != switchPosition){
|
|
Serial.printf_P(PSTR("Position %d\n"), switchPosition);
|
|
oldSwitchPosition = switchPosition;
|
|
}
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if CONFIG_APM_HARDWARE != APM_HARDWARE_APM2
|
|
static int8_t
|
|
test_dipswitches(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
print_hit_enter();
|
|
delay(1000);
|
|
|
|
if (!g.switch_enable) {
|
|
Serial.println_P(PSTR("dip switches disabled, using EEPROM"));
|
|
}
|
|
|
|
while(1){
|
|
delay(100);
|
|
update_servo_switches();
|
|
|
|
if (g.mix_mode == 0) {
|
|
Serial.printf_P(PSTR("Mix:standard \trev roll:%d, rev pitch:%d, rev rudder:%d\n"),
|
|
(int)g.channel_roll.get_reverse(),
|
|
(int)g.channel_pitch.get_reverse(),
|
|
(int)g.channel_rudder.get_reverse());
|
|
} else {
|
|
Serial.printf_P(PSTR("Mix:elevons \trev elev:%d, rev ch1:%d, rev ch2:%d\n"),
|
|
(int)g.reverse_elevons,
|
|
(int)g.reverse_ch1_elevon,
|
|
(int)g.reverse_ch2_elevon);
|
|
}
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_APM_HARDWARE != APM_HARDWARE_APM2
|
|
|
|
|
|
//-------------------------------------------------------------------------------------------
|
|
// tests in this section are for real sensors or sensors that have been simulated
|
|
|
|
#if HIL_MODE == HIL_MODE_DISABLED || HIL_MODE == HIL_MODE_SENSORS
|
|
|
|
#if CONFIG_ADC == ENABLED
|
|
static int8_t
|
|
test_adc(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
print_hit_enter();
|
|
isr_registry.init();
|
|
timer_scheduler.init( &isr_registry );
|
|
adc.Init(&timer_scheduler);
|
|
delay(1000);
|
|
Serial.printf_P(PSTR("ADC\n"));
|
|
delay(1000);
|
|
|
|
while(1){
|
|
for (int i=0;i<9;i++) Serial.printf_P(PSTR("%.1f\t"),adc.Ch(i));
|
|
Serial.println();
|
|
delay(100);
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_ADC
|
|
|
|
static int8_t
|
|
test_gps(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
print_hit_enter();
|
|
delay(1000);
|
|
|
|
while(1){
|
|
delay(333);
|
|
|
|
// Blink GPS LED if we don't have a fix
|
|
// ------------------------------------
|
|
update_GPS_light();
|
|
|
|
g_gps->update();
|
|
|
|
if (g_gps->new_data){
|
|
Serial.printf_P(PSTR("Lat: %ld, Lon %ld, Alt: %ldm, #sats: %d\n"),
|
|
g_gps->latitude,
|
|
g_gps->longitude,
|
|
g_gps->altitude/100,
|
|
g_gps->num_sats);
|
|
}else{
|
|
Serial.printf_P(PSTR("."));
|
|
}
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int8_t
|
|
test_imu(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
//Serial.printf_P(PSTR("Calibrating."));
|
|
isr_registry.init();
|
|
timer_scheduler.init( &isr_registry );
|
|
imu.init(IMU::COLD_START, delay, &timer_scheduler);
|
|
|
|
print_hit_enter();
|
|
delay(1000);
|
|
|
|
while(1){
|
|
delay(20);
|
|
if (millis() - fast_loopTimer > 19) {
|
|
delta_ms_fast_loop = millis() - fast_loopTimer;
|
|
G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator
|
|
fast_loopTimer = millis();
|
|
|
|
// IMU
|
|
// ---
|
|
dcm.update_DCM();
|
|
|
|
if(g.compass_enabled) {
|
|
medium_loopCounter++;
|
|
if(medium_loopCounter == 5){
|
|
compass.read(); // Read magnetometer
|
|
compass.calculate(dcm.get_dcm_matrix()); // Calculate heading
|
|
medium_loopCounter = 0;
|
|
}
|
|
}
|
|
|
|
// We are using the IMU
|
|
// ---------------------
|
|
Vector3f gyros = imu.get_gyro();
|
|
Vector3f accels = imu.get_accel();
|
|
Serial.printf_P(PSTR("r:%4d p:%4d y:%3d g=(%5.1f %5.1f %5.1f) a=(%5.1f %5.1f %5.1f)\n"),
|
|
(int)dcm.roll_sensor / 100,
|
|
(int)dcm.pitch_sensor / 100,
|
|
(uint16_t)dcm.yaw_sensor / 100,
|
|
gyros.x, gyros.y, gyros.z,
|
|
accels.x, accels.y, accels.z);
|
|
}
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static int8_t
|
|
test_mag(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
if (!g.compass_enabled) {
|
|
Serial.printf_P(PSTR("Compass: "));
|
|
print_enabled(false);
|
|
return (0);
|
|
}
|
|
|
|
compass.set_orientation(MAG_ORIENTATION);
|
|
if (!compass.init()) {
|
|
Serial.println_P(PSTR("Compass initialisation failed!"));
|
|
return 0;
|
|
}
|
|
dcm.set_compass(&compass);
|
|
report_compass();
|
|
|
|
// we need the DCM initialised for this test
|
|
isr_registry.init();
|
|
timer_scheduler.init( &isr_registry );
|
|
imu.init(IMU::COLD_START, delay, &timer_scheduler);
|
|
|
|
int counter = 0;
|
|
//Serial.printf_P(PSTR("MAG_ORIENTATION: %d\n"), MAG_ORIENTATION);
|
|
|
|
print_hit_enter();
|
|
|
|
while(1) {
|
|
delay(20);
|
|
if (millis() - fast_loopTimer > 19) {
|
|
delta_ms_fast_loop = millis() - fast_loopTimer;
|
|
G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator
|
|
fast_loopTimer = millis();
|
|
|
|
// IMU
|
|
// ---
|
|
dcm.update_DCM();
|
|
|
|
medium_loopCounter++;
|
|
if(medium_loopCounter == 5){
|
|
compass.read(); // Read magnetometer
|
|
compass.calculate(dcm.get_dcm_matrix()); // Calculate heading
|
|
compass.null_offsets(dcm.get_dcm_matrix());
|
|
medium_loopCounter = 0;
|
|
}
|
|
|
|
counter++;
|
|
if (counter>20) {
|
|
Vector3f maggy = compass.get_offsets();
|
|
Serial.printf_P(PSTR("Heading: %ld, XYZ: %d, %d, %d,\tXYZoff: %6.2f, %6.2f, %6.2f\n"),
|
|
(wrap_360(ToDeg(compass.heading) * 100)) /100,
|
|
compass.mag_x,
|
|
compass.mag_y,
|
|
compass.mag_z,
|
|
maggy.x,
|
|
maggy.y,
|
|
maggy.z);
|
|
counter=0;
|
|
}
|
|
}
|
|
if (Serial.available() > 0) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// save offsets. This allows you to get sane offset values using
|
|
// the CLI before you go flying.
|
|
Serial.println_P(PSTR("saving offsets"));
|
|
compass.save_offsets();
|
|
return (0);
|
|
}
|
|
|
|
#endif // HIL_MODE == HIL_MODE_DISABLED || HIL_MODE == HIL_MODE_SENSORS
|
|
|
|
//-------------------------------------------------------------------------------------------
|
|
// real sensors that have not been simulated yet go here
|
|
|
|
#if HIL_MODE == HIL_MODE_DISABLED
|
|
|
|
static int8_t
|
|
test_airspeed(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
float airspeed_ch = adc.Ch(AIRSPEED_CH);
|
|
// Serial.println(adc.Ch(AIRSPEED_CH));
|
|
Serial.printf_P(PSTR("airspeed_ch: %.1f\n"), airspeed_ch);
|
|
|
|
if (g.airspeed_enabled == false){
|
|
Serial.printf_P(PSTR("airspeed: "));
|
|
print_enabled(false);
|
|
return (0);
|
|
|
|
}else{
|
|
print_hit_enter();
|
|
zero_airspeed();
|
|
Serial.printf_P(PSTR("airspeed: "));
|
|
print_enabled(true);
|
|
|
|
while(1){
|
|
delay(20);
|
|
read_airspeed();
|
|
Serial.printf_P(PSTR("%.1f m/s\n"), airspeed / 100.0);
|
|
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static int8_t
|
|
test_pressure(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
Serial.printf_P(PSTR("Uncalibrated relative airpressure\n"));
|
|
print_hit_enter();
|
|
|
|
home.alt = 0;
|
|
wp_distance = 0;
|
|
init_barometer();
|
|
|
|
while(1){
|
|
delay(100);
|
|
current_loc.alt = read_barometer() + home.alt;
|
|
|
|
Serial.printf_P(PSTR("Alt: %0.2fm, Raw: %ld\n"),
|
|
current_loc.alt / 100.0,
|
|
abs_pressure);
|
|
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int8_t
|
|
test_rawgps(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
print_hit_enter();
|
|
delay(1000);
|
|
|
|
while(1){
|
|
if (Serial3.available()){
|
|
digitalWrite(B_LED_PIN, LED_ON); // Blink Yellow LED if we are sending data to GPS
|
|
Serial1.write(Serial3.read());
|
|
digitalWrite(B_LED_PIN, LED_OFF);
|
|
}
|
|
if (Serial1.available()){
|
|
digitalWrite(C_LED_PIN, LED_ON); // Blink Red LED if we are receiving data from GPS
|
|
Serial3.write(Serial1.read());
|
|
digitalWrite(C_LED_PIN, LED_OFF);
|
|
}
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
#endif // HIL_MODE == HIL_MODE_DISABLED
|
|
|
|
#endif // CLI_ENABLED
|