ardupilot/ArduCopter/crash_check.cpp

369 lines
13 KiB
C++

#include "Copter.h"
// Code to detect a crash main ArduCopter code
#define CRASH_CHECK_TRIGGER_SEC 2 // 2 seconds inverted indicates a crash
#define CRASH_CHECK_ANGLE_DEVIATION_DEG 30.0f // 30 degrees beyond target angle is signal we are out of control
#define CRASH_CHECK_ANGLE_MIN_DEG 15.0f // vehicle must be leaning at least 15deg to trigger crash check
#define CRASH_CHECK_SPEED_MAX 10.0f // vehicle must be moving at less than 10m/s to trigger crash check
#define CRASH_CHECK_ACCEL_MAX 3.0f // vehicle must be accelerating less than 3m/s/s to be considered crashed
// Code to detect a thrust loss main ArduCopter code
#define THRUST_LOSS_CHECK_TRIGGER_SEC 1 // 1 second descent while level and high throttle indicates thrust loss
#define THRUST_LOSS_CHECK_ANGLE_DEVIATION_CD 1500 // we can't expect to maintain altitude beyond 15 degrees on all aircraft
#define THRUST_LOSS_CHECK_MINIMUM_THROTTLE 0.9f // we can expect to maintain altitude above 90 % throttle
// Yaw imbalance check
#define YAW_IMBALANCE_IMAX_THRESHOLD 0.75f
#define YAW_IMBALANCE_I_THERSHOLD 0.1f
#define YAW_IMBALANCE_WARN_MS 10000
// crash_check - disarms motors if a crash has been detected
// crashes are detected by the vehicle being more than 20 degrees beyond it's angle limits continuously for more than 1 second
// called at MAIN_LOOP_RATE
void Copter::crash_check()
{
static uint16_t crash_counter; // number of iterations vehicle may have been crashed
// return immediately if disarmed, or crash checking disabled
if (!motors->armed() || ap.land_complete || g.fs_crash_check == 0) {
crash_counter = 0;
return;
}
// exit immediately if in standby
if (standby_active) {
crash_counter = 0;
return;
}
// return immediately if we are not in an angle stabilize flight mode or we are flipping
if (control_mode == Mode::Number::ACRO || control_mode == Mode::Number::FLIP) {
crash_counter = 0;
return;
}
#if MODE_AUTOROTATE_ENABLED == ENABLED
//return immediately if in autorotation mode
if (control_mode == Mode::Number::AUTOROTATE) {
crash_counter = 0;
return;
}
#endif
// vehicle not crashed if 1hz filtered acceleration is more than 3m/s (1G on Z-axis has been subtracted)
const float filtered_acc = land_accel_ef_filter.get().length();
if (filtered_acc >= CRASH_CHECK_ACCEL_MAX) {
crash_counter = 0;
return;
}
// check for lean angle over 15 degrees
const float lean_angle_deg = degrees(acosf(ahrs.cos_roll()*ahrs.cos_pitch()));
if (lean_angle_deg <= CRASH_CHECK_ANGLE_MIN_DEG) {
crash_counter = 0;
return;
}
// check for angle error over 30 degrees
const float angle_error = attitude_control->get_att_error_angle_deg();
if (angle_error <= CRASH_CHECK_ANGLE_DEVIATION_DEG) {
crash_counter = 0;
return;
}
// check for speed under 10m/s (if available)
Vector3f vel_ned;
if (ahrs.get_velocity_NED(vel_ned) && (vel_ned.length() >= CRASH_CHECK_SPEED_MAX)) {
crash_counter = 0;
return;
}
// we may be crashing
crash_counter++;
// check if crashing for 2 seconds
if (crash_counter >= (CRASH_CHECK_TRIGGER_SEC * scheduler.get_loop_rate_hz())) {
AP::logger().Write_Error(LogErrorSubsystem::CRASH_CHECK, LogErrorCode::CRASH_CHECK_CRASH);
// keep logging even if disarmed:
AP::logger().set_force_log_disarmed(true);
// send message to gcs
gcs().send_text(MAV_SEVERITY_EMERGENCY,"Crash: Disarming: AngErr=%.0f>%.0f, Accel=%.1f<%.1f", angle_error, CRASH_CHECK_ANGLE_DEVIATION_DEG, filtered_acc, CRASH_CHECK_ACCEL_MAX);
// disarm motors
copter.arming.disarm(AP_Arming::Method::CRASH);
}
}
// check for loss of thrust and trigger thrust boost in motors library
void Copter::thrust_loss_check()
{
static uint16_t thrust_loss_counter; // number of iterations vehicle may have been crashed
// no-op if suppresed by flight options param
if ((copter.g2.flight_options & uint32_t(FlightOptions::DISABLE_THRUST_LOSS_CHECK)) != 0) {
return;
}
// exit immediately if thrust boost is already engaged
if (motors->get_thrust_boost()) {
return;
}
// return immediately if disarmed
if (!motors->armed() || ap.land_complete) {
thrust_loss_counter = 0;
return;
}
// exit immediately if in standby
if (standby_active) {
return;
}
// check for desired angle over 15 degrees
// todo: add thrust angle to AC_AttitudeControl
const Vector3f angle_target = attitude_control->get_att_target_euler_cd();
if (sq(angle_target.x) + sq(angle_target.y) > sq(THRUST_LOSS_CHECK_ANGLE_DEVIATION_CD)) {
thrust_loss_counter = 0;
return;
}
// check for throttle over 90% or throttle saturation
if ((attitude_control->get_throttle_in() < THRUST_LOSS_CHECK_MINIMUM_THROTTLE) && (!motors->limit.throttle_upper)) {
thrust_loss_counter = 0;
return;
}
// check throttle is over 25% to prevent checks triggering from thrust limitations caused by low commanded throttle
if ((attitude_control->get_throttle_in() < 0.25f)) {
thrust_loss_counter = 0;
return;
}
// check for descent
if (!is_negative(inertial_nav.get_velocity_z())) {
thrust_loss_counter = 0;
return;
}
// check for angle error over 30 degrees to ensure the aircraft has attitude control
const float angle_error = attitude_control->get_att_error_angle_deg();
if (angle_error >= CRASH_CHECK_ANGLE_DEVIATION_DEG) {
thrust_loss_counter = 0;
return;
}
// the aircraft is descending with low requested roll and pitch, at full available throttle, with attitude control
// we may have lost thrust
thrust_loss_counter++;
// check if thrust loss for 1 second
if (thrust_loss_counter >= (THRUST_LOSS_CHECK_TRIGGER_SEC * scheduler.get_loop_rate_hz())) {
// reset counter
thrust_loss_counter = 0;
AP::logger().Write_Error(LogErrorSubsystem::THRUST_LOSS_CHECK, LogErrorCode::FAILSAFE_OCCURRED);
// send message to gcs
gcs().send_text(MAV_SEVERITY_EMERGENCY, "Potential Thrust Loss (%d)", (int)motors->get_lost_motor() + 1);
// enable thrust loss handling
motors->set_thrust_boost(true);
// the motors library disables this when it is no longer needed to achieve the commanded output
}
}
// check for a large yaw imbalance, could be due to badly calibrated ESC or misaligned motors
void Copter::yaw_imbalance_check()
{
// no-op if suppresed by flight options param
if ((copter.g2.flight_options & uint32_t(FlightOptions::DISABLE_YAW_IMBALANCE_WARNING)) != 0) {
return;
}
// If I is disabled it is unlikely that the issue is not obvious
if (!is_positive(attitude_control->get_rate_yaw_pid().kI())) {
return;
}
// thrust loss is trigerred, yaw issues are expected
if (motors->get_thrust_boost()) {
yaw_I_filt.reset(0.0f);
return;
}
// return immediately if disarmed
if (!motors->armed() || ap.land_complete) {
yaw_I_filt.reset(0.0f);
return;
}
// exit immediately if in standby
if (standby_active) {
yaw_I_filt.reset(0.0f);
return;
}
// magnitude of low pass filtered I term
const float I_term = attitude_control->get_rate_yaw_pid().get_pid_info().I;
const float I = fabsf(yaw_I_filt.apply(attitude_control->get_rate_yaw_pid().get_pid_info().I,G_Dt));
if (I > fabsf(I_term)) {
// never allow to be larger than I
yaw_I_filt.reset(I_term);
}
const float I_max = attitude_control->get_rate_yaw_pid().imax();
if ((is_positive(I_max) && ((I > YAW_IMBALANCE_IMAX_THRESHOLD * I_max) || (is_equal(I_term,I_max)))) ||
(I >YAW_IMBALANCE_I_THERSHOLD)) {
// filtered using over precentage of I max or unfiltered = I max
// I makes up more than precentage of total available control power
const uint32_t now = millis();
if (now - last_yaw_warn_ms > YAW_IMBALANCE_WARN_MS) {
last_yaw_warn_ms = now;
gcs().send_text(MAV_SEVERITY_EMERGENCY, "Yaw Imbalance %0.0f%%", I *100);
}
}
}
#if PARACHUTE == ENABLED
// Code to detect a crash main ArduCopter code
#define PARACHUTE_CHECK_TRIGGER_SEC 1 // 1 second of loss of control triggers the parachute
#define PARACHUTE_CHECK_ANGLE_DEVIATION_CD 3000 // 30 degrees off from target indicates a loss of control
// parachute_check - disarms motors and triggers the parachute if serious loss of control has been detected
// vehicle is considered to have a "serious loss of control" by the vehicle being more than 30 degrees off from the target roll and pitch angles continuously for 1 second
// called at MAIN_LOOP_RATE
void Copter::parachute_check()
{
static uint16_t control_loss_count; // number of iterations we have been out of control
static int32_t baro_alt_start;
// exit immediately if parachute is not enabled
if (!parachute.enabled()) {
return;
}
// pass is_flying to parachute library
parachute.set_is_flying(!ap.land_complete);
// pass sink rate to parachute library
parachute.set_sink_rate(-inertial_nav.get_velocity_z() * 0.01f);
// exit immediately if in standby
if (standby_active) {
return;
}
// call update to give parachute a chance to move servo or relay back to off position
parachute.update();
// return immediately if motors are not armed or pilot's throttle is above zero
if (!motors->armed()) {
control_loss_count = 0;
return;
}
if (parachute.release_initiated()) {
copter.arming.disarm(AP_Arming::Method::PARACHUTE_RELEASE);
return;
}
// return immediately if we are not in an angle stabilize flight mode or we are flipping
if (control_mode == Mode::Number::ACRO || control_mode == Mode::Number::FLIP) {
control_loss_count = 0;
return;
}
// ensure we are flying
if (ap.land_complete) {
control_loss_count = 0;
return;
}
// ensure the first control_loss event is from above the min altitude
if (control_loss_count == 0 && parachute.alt_min() != 0 && (current_loc.alt < (int32_t)parachute.alt_min() * 100)) {
return;
}
// trigger parachute release based on sink rate
parachute.check_sink_rate();
// check for angle error over 30 degrees
const float angle_error = attitude_control->get_att_error_angle_deg();
if (angle_error <= CRASH_CHECK_ANGLE_DEVIATION_DEG) {
if (control_loss_count > 0) {
control_loss_count--;
}
return;
}
// increment counter
if (control_loss_count < (PARACHUTE_CHECK_TRIGGER_SEC*scheduler.get_loop_rate_hz())) {
control_loss_count++;
}
// record baro alt if we have just started losing control
if (control_loss_count == 1) {
baro_alt_start = baro_alt;
// exit if baro altitude change indicates we are not falling
} else if (baro_alt >= baro_alt_start) {
control_loss_count = 0;
return;
// To-Do: add check that the vehicle is actually falling
// check if loss of control for at least 1 second
} else if (control_loss_count >= (PARACHUTE_CHECK_TRIGGER_SEC*scheduler.get_loop_rate_hz())) {
// reset control loss counter
control_loss_count = 0;
AP::logger().Write_Error(LogErrorSubsystem::CRASH_CHECK, LogErrorCode::CRASH_CHECK_LOSS_OF_CONTROL);
// release parachute
parachute_release();
}
}
// parachute_release - trigger the release of the parachute, disarm the motors and notify the user
void Copter::parachute_release()
{
// disarm motors
arming.disarm(AP_Arming::Method::PARACHUTE_RELEASE);
// release parachute
parachute.release();
#if LANDING_GEAR_ENABLED == ENABLED
// deploy landing gear
landinggear.set_position(AP_LandingGear::LandingGear_Deploy);
#endif
}
// parachute_manual_release - trigger the release of the parachute, after performing some checks for pilot error
// checks if the vehicle is landed
void Copter::parachute_manual_release()
{
// exit immediately if parachute is not enabled
if (!parachute.enabled()) {
return;
}
// do not release if vehicle is landed
// do not release if we are landed or below the minimum altitude above home
if (ap.land_complete) {
// warn user of reason for failure
gcs().send_text(MAV_SEVERITY_INFO,"Parachute: Landed");
AP::logger().Write_Error(LogErrorSubsystem::PARACHUTES, LogErrorCode::PARACHUTE_LANDED);
return;
}
// do not release if we are landed or below the minimum altitude above home
if ((parachute.alt_min() != 0 && (current_loc.alt < (int32_t)parachute.alt_min() * 100))) {
// warn user of reason for failure
gcs().send_text(MAV_SEVERITY_ALERT,"Parachute: Too low");
AP::logger().Write_Error(LogErrorSubsystem::PARACHUTES, LogErrorCode::PARACHUTE_TOO_LOW);
return;
}
// if we get this far release parachute
parachute_release();
}
#endif // PARACHUTE == ENABLED