mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-25 01:58:29 -04:00
1456a2a912
ArduCopterMega -> ArduCopter added archives directory for old code
256 lines
7.4 KiB
Plaintext
256 lines
7.4 KiB
Plaintext
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
//****************************************************************
|
|
// Function that will calculate the desired direction to fly and distance
|
|
//****************************************************************
|
|
static void navigate()
|
|
{
|
|
// do not navigate with corrupt data
|
|
// ---------------------------------
|
|
if (g_gps->fix == 0){
|
|
g_gps->new_data = false;
|
|
return;
|
|
}
|
|
|
|
if(next_WP.lat == 0){
|
|
return;
|
|
}
|
|
|
|
// waypoint distance from plane
|
|
// ----------------------------
|
|
wp_distance = get_distance(¤t_loc, &next_WP);
|
|
|
|
if (wp_distance < 0){
|
|
//gcs.send_text_P(SEVERITY_HIGH,PSTR("<navigate> WP error - distance < 0"));
|
|
//Serial.println(wp_distance,DEC);
|
|
//print_current_waypoints();
|
|
return;
|
|
}
|
|
|
|
// target_bearing is where we should be heading
|
|
// --------------------------------------------
|
|
target_bearing = get_bearing(¤t_loc, &next_WP);
|
|
|
|
// nav_bearing will include xtrac correction
|
|
// -----------------------------------------
|
|
//xtrack_enabled = false;
|
|
if(xtrack_enabled){
|
|
nav_bearing = wrap_360(target_bearing + get_crosstrack_correction());
|
|
}else{
|
|
nav_bearing = target_bearing;
|
|
}
|
|
}
|
|
|
|
static bool check_missed_wp()
|
|
{
|
|
long temp = target_bearing - saved_target_bearing;
|
|
temp = wrap_180(temp);
|
|
return (abs(temp) > 10000); //we pased the waypoint by 10 °
|
|
}
|
|
|
|
// ------------------------------
|
|
|
|
// long_error, lat_error
|
|
static void calc_location_error()
|
|
{
|
|
/*
|
|
Becuase we are using lat and lon to do our distance errors here's a quick chart:
|
|
100 = 1m
|
|
1000 = 11m = 36 feet
|
|
1800 = 19.80m = 60 feet
|
|
3000 = 33m
|
|
10000 = 111m
|
|
pitch_max = 22° (2200)
|
|
*/
|
|
|
|
// X ROLL
|
|
long_error = (float)(next_WP.lng - current_loc.lng) * scaleLongDown; // 500 - 0 = 500 roll EAST
|
|
|
|
// Y PITCH
|
|
lat_error = next_WP.lat - current_loc.lat; // 0 - 500 = -500 pitch NORTH
|
|
}
|
|
|
|
#define NAV_ERR_MAX 400
|
|
static void calc_nav_rate(int x_error, int y_error, int max_speed, int min_speed)
|
|
{
|
|
// moved to globals for logging
|
|
//int x_actual_speed, y_actual_speed;
|
|
//int x_rate_error, y_rate_error;
|
|
x_error = constrain(x_error, -NAV_ERR_MAX, NAV_ERR_MAX);
|
|
y_error = constrain(y_error, -NAV_ERR_MAX, NAV_ERR_MAX);
|
|
|
|
float scaler = (float)max_speed/(float)NAV_ERR_MAX;
|
|
g.pi_loiter_lat.kP(scaler);
|
|
g.pi_loiter_lon.kP(scaler);
|
|
|
|
int x_target_speed = g.pi_loiter_lon.get_pi(x_error, dTnav);
|
|
int y_target_speed = g.pi_loiter_lat.get_pi(y_error, dTnav);
|
|
|
|
//Serial.printf("scaler: %1.3f, y_target_speed %d",scaler,y_target_speed);
|
|
|
|
if(x_target_speed > 0){
|
|
x_target_speed = max(x_target_speed, min_speed);
|
|
}else{
|
|
x_target_speed = min(x_target_speed, -min_speed);
|
|
}
|
|
|
|
if(y_target_speed > 0){
|
|
y_target_speed = max(y_target_speed, min_speed);
|
|
}else{
|
|
y_target_speed = min(y_target_speed, -min_speed);
|
|
}
|
|
|
|
// find the rates:
|
|
// calc the cos of the error to tell how fast we are moving towards the target in cm
|
|
y_actual_speed = (float)g_gps->ground_speed * cos(radians((float)g_gps->ground_course/100.0));
|
|
y_rate_error = y_target_speed - y_actual_speed; // 413
|
|
y_rate_error = constrain(y_rate_error, -250, 250); // added a rate error limit to keep pitching down to a minimum
|
|
nav_lat = constrain(g.pi_nav_lat.get_pi(y_rate_error, dTnav), -3500, 3500);
|
|
|
|
//Serial.printf("yr: %d, nav_lat: %d, int:%d \n",y_rate_error, nav_lat, g.pi_nav_lat.get_integrator());
|
|
|
|
// calc the sin of the error to tell how fast we are moving laterally to the target in cm
|
|
x_actual_speed = (float)g_gps->ground_speed * sin(radians((float)g_gps->ground_course/100.0));
|
|
x_rate_error = x_target_speed - x_actual_speed;
|
|
x_rate_error = constrain(x_rate_error, -250, 250);
|
|
nav_lon = constrain(g.pi_nav_lon.get_pi(x_rate_error, dTnav), -3500, 3500);
|
|
}
|
|
|
|
// nav_roll, nav_pitch
|
|
static void calc_nav_pitch_roll()
|
|
{
|
|
// rotate the vector
|
|
nav_roll = (float)nav_lon * sin_yaw_y - (float)nav_lat * cos_yaw_x;
|
|
nav_pitch = (float)nav_lon * cos_yaw_x + (float)nav_lat * sin_yaw_y;
|
|
|
|
// flip pitch because forward is negative
|
|
nav_pitch = -nav_pitch;
|
|
}
|
|
|
|
// ------------------------------
|
|
static void calc_bearing_error()
|
|
{
|
|
bearing_error = nav_bearing - dcm.yaw_sensor;
|
|
bearing_error = wrap_180(bearing_error);
|
|
}
|
|
|
|
static long get_altitude_error()
|
|
{
|
|
return next_WP.alt - current_loc.alt;
|
|
}
|
|
|
|
/*
|
|
static void calc_altitude_smoothing_error()
|
|
{
|
|
// limit climb rates - we draw a straight line between first location and edge of waypoint_radius
|
|
target_altitude = next_WP.alt - ((float)(wp_distance * (next_WP.alt - prev_WP.alt)) / (float)(wp_totalDistance - g.waypoint_radius));
|
|
|
|
// stay within a certain range
|
|
if(prev_WP.alt > next_WP.alt){
|
|
target_altitude = constrain(target_altitude, next_WP.alt, prev_WP.alt);
|
|
}else{
|
|
target_altitude = constrain(target_altitude, prev_WP.alt, next_WP.alt);
|
|
}
|
|
|
|
altitude_error = target_altitude - current_loc.alt;
|
|
}
|
|
*/
|
|
|
|
static int get_loiter_angle()
|
|
{
|
|
float power;
|
|
int angle;
|
|
|
|
if(wp_distance <= g.loiter_radius){
|
|
power = float(wp_distance) / float(g.loiter_radius);
|
|
power = constrain(power, 0.5, 1);
|
|
angle = 90.0 * (2.0 + power);
|
|
}else if(wp_distance < (g.loiter_radius + LOITER_RANGE)){
|
|
power = -((float)(wp_distance - g.loiter_radius - LOITER_RANGE) / LOITER_RANGE);
|
|
power = constrain(power, 0.5, 1); //power = constrain(power, 0, 1);
|
|
angle = power * 90;
|
|
}
|
|
|
|
return angle;
|
|
}
|
|
|
|
|
|
static long wrap_360(long error)
|
|
{
|
|
if (error > 36000) error -= 36000;
|
|
if (error < 0) error += 36000;
|
|
return error;
|
|
}
|
|
|
|
static long wrap_180(long error)
|
|
{
|
|
if (error > 18000) error -= 36000;
|
|
if (error < -18000) error += 36000;
|
|
return error;
|
|
}
|
|
|
|
static long get_crosstrack_correction(void)
|
|
{
|
|
// Crosstrack Error
|
|
// ----------------
|
|
if (cross_track_test() < 9000) { // If we are too far off or too close we don't do track following
|
|
|
|
// Meters we are off track line
|
|
float error = sin(radians((target_bearing - crosstrack_bearing) / (float)100)) * (float)wp_distance;
|
|
|
|
// take meters * 100 to get adjustment to nav_bearing
|
|
long _crosstrack_correction = g.pi_crosstrack.get_pi(error, dTnav) * 100;
|
|
|
|
// constrain answer to 30° to avoid overshoot
|
|
return constrain(_crosstrack_correction, -g.crosstrack_entry_angle.get(), g.crosstrack_entry_angle.get());
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static long cross_track_test()
|
|
{
|
|
long temp = wrap_180(target_bearing - crosstrack_bearing);
|
|
return abs(temp);
|
|
}
|
|
|
|
static void reset_crosstrack()
|
|
{
|
|
crosstrack_bearing = get_bearing(¤t_loc, &next_WP); // Used for track following
|
|
}
|
|
|
|
static long get_altitude_above_home(void)
|
|
{
|
|
// This is the altitude above the home location
|
|
// The GPS gives us altitude at Sea Level
|
|
// if you slope soar, you should see a negative number sometimes
|
|
// -------------------------------------------------------------
|
|
return current_loc.alt - home.alt;
|
|
}
|
|
|
|
// distance is returned in meters
|
|
static long get_distance(struct Location *loc1, struct Location *loc2)
|
|
{
|
|
//if(loc1->lat == 0 || loc1->lng == 0)
|
|
// return -1;
|
|
//if(loc2->lat == 0 || loc2->lng == 0)
|
|
// return -1;
|
|
float dlat = (float)(loc2->lat - loc1->lat);
|
|
float dlong = ((float)(loc2->lng - loc1->lng)) * scaleLongDown;
|
|
return sqrt(sq(dlat) + sq(dlong)) * .01113195;
|
|
}
|
|
|
|
static long get_alt_distance(struct Location *loc1, struct Location *loc2)
|
|
{
|
|
return abs(loc1->alt - loc2->alt);
|
|
}
|
|
|
|
static long get_bearing(struct Location *loc1, struct Location *loc2)
|
|
{
|
|
long off_x = loc2->lng - loc1->lng;
|
|
long off_y = (loc2->lat - loc1->lat) * scaleLongUp;
|
|
long bearing = 9000 + atan2(-off_y, off_x) * 5729.57795;
|
|
if (bearing < 0) bearing += 36000;
|
|
return bearing;
|
|
}
|