ardupilot/libraries/RC_Channel/RC_Channel.cpp

613 lines
15 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* RC_Channel.cpp - Radio library for Arduino
* Code by Jason Short. DIYDrones.com
*
*/
#include <stdlib.h>
#include <cmath>
#include <AP_HAL/AP_HAL.h>
extern const AP_HAL::HAL& hal;
#include <AP_Math/AP_Math.h>
#include "RC_Channel.h"
/// global array with pointers to all APM RC channels, will be used by AP_Mount
/// and AP_Camera classes / It points to RC input channels.
RC_Channel *RC_Channel::_rc_ch[RC_MAX_CHANNELS];
const AP_Param::GroupInfo RC_Channel::var_info[] = {
// @Param: MIN
// @DisplayName: RC min PWM
// @Description: RC minimum PWM pulse width. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.
// @Units: pwm
// @Range: 800 2200
// @Increment: 1
// @User: Advanced
AP_GROUPINFO_FLAGS("MIN", 0, RC_Channel, _radio_min, 1100, AP_PARAM_NO_SHIFT),
// @Param: TRIM
// @DisplayName: RC trim PWM
// @Description: RC trim (neutral) PWM pulse width. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.
// @Units: pwm
// @Range: 800 2200
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("TRIM", 1, RC_Channel, _radio_trim, 1500),
// @Param: MAX
// @DisplayName: RC max PWM
// @Description: RC maximum PWM pulse width. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.
// @Units: pwm
// @Range: 800 2200
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("MAX", 2, RC_Channel, _radio_max, 1900),
// @Param: REV
// @DisplayName: RC reverse
// @Description: Reverse servo operation. Set to 1 for normal (forward) operation. Set to -1 to reverse this channel.
// @Values: -1:Reversed,1:Normal
// @User: Advanced
AP_GROUPINFO("REV", 3, RC_Channel, _reverse, 1),
// Note: index 4 was used by the previous _dead_zone value. We
// changed it to 5 as dead zone values had previously been
// incorrectly saved, overriding user values. They were also
// incorrectly interpreted for the throttle on APM:Plane
// @Param: DZ
// @DisplayName: RC dead-zone
// @Description: dead zone around trim or bottom
// @Units: pwm
// @Range: 0 200
// @User: Advanced
AP_GROUPINFO("DZ", 5, RC_Channel, _dead_zone, 0),
AP_GROUPEND
};
// setup the control preferences
void
RC_Channel::set_range(int16_t low, int16_t high)
{
set_range_in(low, high);
set_range_out(low, high);
}
void
RC_Channel::set_range_out(int16_t low, int16_t high)
{
_type_out = RC_CHANNEL_TYPE_RANGE;
_high_out = high;
_low_out = low;
}
void
RC_Channel::set_range_in(int16_t low, int16_t high)
{
_type_in = RC_CHANNEL_TYPE_RANGE;
_high_in = high;
_low_in = low;
}
void
RC_Channel::set_angle(int16_t angle)
{
set_angle_in(angle);
set_angle_out(angle);
}
void
RC_Channel::set_angle_out(int16_t angle)
{
_type_out = RC_CHANNEL_TYPE_ANGLE;
_high_out = angle;
}
void
RC_Channel::set_angle_in(int16_t angle)
{
_type_in = RC_CHANNEL_TYPE_ANGLE;
_high_in = angle;
}
void
RC_Channel::set_default_dead_zone(int16_t dzone)
{
_dead_zone.set_default(abs(dzone));
}
void
RC_Channel::set_reverse(bool reverse)
{
if (reverse) _reverse = -1;
else _reverse = 1;
}
bool
RC_Channel::get_reverse(void) const
{
if (_reverse == -1) {
return true;
}
return false;
}
void
RC_Channel::set_type(uint8_t t)
{
set_type_in(t);
set_type_out(t);
}
void
RC_Channel::set_type_in(uint8_t t)
{
_type_in = t;
}
void
RC_Channel::set_type_out(uint8_t t)
{
_type_out = t;
}
// call after first read
void
RC_Channel::trim()
{
_radio_trim = _radio_in;
}
// read input from APM_RC - create a control_in value
void
RC_Channel::set_pwm(int16_t pwm)
{
_radio_in = pwm;
if (_type_in == RC_CHANNEL_TYPE_RANGE) {
_control_in = pwm_to_range();
} else {
//RC_CHANNEL_TYPE_ANGLE, RC_CHANNEL_TYPE_ANGLE_RAW
_control_in = pwm_to_angle();
}
}
/*
call read() and set_pwm() on all channels
*/
void
RC_Channel::set_pwm_all(void)
{
for (uint8_t i=0; i<RC_MAX_CHANNELS; i++) {
if (_rc_ch[i] != nullptr) {
_rc_ch[i]->set_pwm(_rc_ch[i]->read());
}
}
}
// read input from APM_RC - create a control_in value, but use a
// zero value for the dead zone. When done this way the control_in
// value can be used as servo_out to give the same output as input
void
RC_Channel::set_pwm_no_deadzone(int16_t pwm)
{
_radio_in = pwm;
if (_type_in == RC_CHANNEL_TYPE_RANGE) {
_control_in = pwm_to_range_dz(0);
} else {
//RC_CHANNEL_ANGLE, RC_CHANNEL_ANGLE_RAW
_control_in = pwm_to_angle_dz(0);
}
}
// returns just the PWM without the offset from radio_min
void
RC_Channel::calc_pwm(void)
{
if(_type_out == RC_CHANNEL_TYPE_RANGE) {
_pwm_out = range_to_pwm();
_radio_out = (_reverse >= 0) ? (_radio_min + _pwm_out) : (_radio_max - _pwm_out);
}else if(_type_out == RC_CHANNEL_TYPE_ANGLE_RAW) {
_pwm_out = (float)_servo_out * 0.1f;
int16_t reverse_mul = (_reverse==-1?-1:1);
_radio_out = (_pwm_out * reverse_mul) + _radio_trim;
}else{ // RC_CHANNEL_TYPE_ANGLE
_pwm_out = angle_to_pwm();
_radio_out = _pwm_out + _radio_trim;
}
_radio_out = constrain_int16(_radio_out, _radio_min.get(), _radio_max.get());
}
/*
return the center stick position expressed as a control_in value
used for thr_mid in copter
*/
int16_t
RC_Channel::get_control_mid() const {
if (_type_in == RC_CHANNEL_TYPE_RANGE) {
int16_t r_in = (_radio_min.get()+_radio_max.get())/2;
if (_reverse == -1) {
r_in = _radio_max.get() - (r_in - _radio_min.get());
}
int16_t radio_trim_low = _radio_min + _dead_zone;
return (_low_in + ((int32_t)(_high_in - _low_in) * (int32_t)(r_in - radio_trim_low)) / (int32_t)(_radio_max - radio_trim_low));
} else {
return 0;
}
}
// ------------------------------------------
void
RC_Channel::load_eeprom(void)
{
_radio_min.load();
_radio_trim.load();
_radio_max.load();
_reverse.load();
_dead_zone.load();
}
void
RC_Channel::save_eeprom(void)
{
_radio_min.save();
_radio_trim.save();
_radio_max.save();
_reverse.save();
_dead_zone.save();
}
// ------------------------------------------
void
RC_Channel::zero_min_max()
{
_radio_min = _radio_max = _radio_in;
}
void
RC_Channel::update_min_max()
{
_radio_min = MIN(_radio_min.get(), _radio_in);
_radio_max = MAX(_radio_max.get(), _radio_in);
}
/*
return an "angle in centidegrees" (normally -4500 to 4500) from
the current radio_in value using the specified dead_zone
*/
int16_t
RC_Channel::pwm_to_angle_dz_trim(uint16_t dead_zone, uint16_t _trim)
{
int16_t radio_trim_high = _trim + dead_zone;
int16_t radio_trim_low = _trim - dead_zone;
// prevent div by 0
if ((radio_trim_low - _radio_min) == 0 || (_radio_max - radio_trim_high) == 0)
return 0;
int16_t reverse_mul = (_reverse==-1?-1:1);
if(_radio_in > radio_trim_high) {
return reverse_mul * ((int32_t)_high_in * (int32_t)(_radio_in - radio_trim_high)) / (int32_t)(_radio_max - radio_trim_high);
}else if(_radio_in < radio_trim_low) {
return reverse_mul * ((int32_t)_high_in * (int32_t)(_radio_in - radio_trim_low)) / (int32_t)(radio_trim_low - _radio_min);
}else
return 0;
}
/*
return an "angle in centidegrees" (normally -4500 to 4500) from
the current radio_in value using the specified dead_zone
*/
int16_t
RC_Channel::pwm_to_angle_dz(uint16_t dead_zone)
{
return pwm_to_angle_dz_trim(dead_zone, _radio_trim);
}
/*
return an "angle in centidegrees" (normally -4500 to 4500) from
the current radio_in value
*/
int16_t
RC_Channel::pwm_to_angle()
{
return pwm_to_angle_dz(_dead_zone);
}
int16_t
RC_Channel::angle_to_pwm()
{
int16_t reverse_mul = (_reverse==-1?-1:1);
if((_servo_out * reverse_mul) > 0) {
return reverse_mul * ((int32_t)_servo_out * (int32_t)(_radio_max - _radio_trim)) / (int32_t)_high_out;
} else {
return reverse_mul * ((int32_t)_servo_out * (int32_t)(_radio_trim - _radio_min)) / (int32_t)_high_out;
}
}
/*
convert a pulse width modulation value to a value in the configured
range, using the specified deadzone
*/
int16_t
RC_Channel::pwm_to_range_dz(uint16_t dead_zone)
{
int16_t r_in = constrain_int16(_radio_in, _radio_min.get(), _radio_max.get());
if (_reverse == -1) {
r_in = _radio_max.get() - (r_in - _radio_min.get());
}
int16_t radio_trim_low = _radio_min + dead_zone;
if (r_in > radio_trim_low)
return (_low_in + ((int32_t)(_high_in - _low_in) * (int32_t)(r_in - radio_trim_low)) / (int32_t)(_radio_max - radio_trim_low));
else if (dead_zone > 0)
return 0;
else
return _low_in;
}
/*
convert a pulse width modulation value to a value in the configured
range
*/
int16_t
RC_Channel::pwm_to_range()
{
return pwm_to_range_dz(_dead_zone);
}
int16_t
RC_Channel::range_to_pwm()
{
if (_high_out == _low_out) {
return _radio_trim;
}
return ((int32_t)(_servo_out - _low_out) * (int32_t)(_radio_max - _radio_min)) / (int32_t)(_high_out - _low_out);
}
// ------------------------------------------
float
RC_Channel::norm_input()
{
float ret;
int16_t reverse_mul = (_reverse==-1?-1:1);
if (_radio_in < _radio_trim) {
if (_radio_min >= _radio_trim) {
return 0.0f;
}
ret = reverse_mul * (float)(_radio_in - _radio_trim) / (float)(_radio_trim - _radio_min);
} else {
if (_radio_max <= _radio_trim) {
return 0.0f;
}
ret = reverse_mul * (float)(_radio_in - _radio_trim) / (float)(_radio_max - _radio_trim);
}
return constrain_float(ret, -1.0f, 1.0f);
}
float
RC_Channel::norm_input_dz()
{
int16_t dz_min = _radio_trim - _dead_zone;
int16_t dz_max = _radio_trim + _dead_zone;
float ret;
int16_t reverse_mul = (_reverse==-1?-1:1);
if (_radio_in < dz_min && dz_min > _radio_min) {
ret = reverse_mul * (float)(_radio_in - dz_min) / (float)(dz_min - _radio_min);
} else if (_radio_in > dz_max && _radio_max > dz_max) {
ret = reverse_mul * (float)(_radio_in - dz_max) / (float)(_radio_max - dz_max);
} else {
ret = 0;
}
return constrain_float(ret, -1.0f, 1.0f);
}
/*
get percentage input from 0 to 100. This ignores the trim value.
*/
uint8_t
RC_Channel::percent_input()
{
if (_radio_in <= _radio_min) {
return _reverse==-1?100:0;
}
if (_radio_in >= _radio_max) {
return _reverse==-1?0:100;
}
uint8_t ret = 100.0f * (_radio_in - _radio_min) / (float)(_radio_max - _radio_min);
if (_reverse == -1) {
ret = 100 - ret;
}
return ret;
}
float
RC_Channel::norm_output()
{
int16_t mid = (_radio_max + _radio_min) / 2;
float ret;
if (mid <= _radio_min) {
return 0;
}
if (_radio_out < mid) {
ret = (float)(_radio_out - mid) / (float)(mid - _radio_min);
} else if (_radio_out > mid) {
ret = (float)(_radio_out - mid) / (float)(_radio_max - mid);
} else {
ret = 0;
}
if (_reverse == -1) {
ret = -ret;
}
return ret;
}
void RC_Channel::output() const
{
hal.rcout->write(_ch_out, _radio_out);
}
void RC_Channel::output_trim()
{
_radio_out = _radio_trim;
output();
}
void RC_Channel::output_trim_all()
{
for (uint8_t i=0; i<RC_MAX_CHANNELS; i++) {
if (_rc_ch[i] != nullptr) {
_rc_ch[i]->output_trim();
}
}
}
/*
setup the failsafe value to the trim value for all channels in chmask
*/
void RC_Channel::setup_failsafe_trim_mask(uint16_t chmask)
{
for (uint8_t i=0; i<RC_MAX_CHANNELS; i++) {
if (_rc_ch[i] != nullptr && ((1U<<i)&chmask)) {
hal.rcout->set_failsafe_pwm(1U<<i, _rc_ch[i]->_radio_trim);
}
}
}
/*
setup the failsafe value to the trim value for all channels
*/
void RC_Channel::setup_failsafe_trim_all()
{
setup_failsafe_trim_mask(0xFFFF);
}
void
RC_Channel::input()
{
_radio_in = hal.rcin->read(_ch_out);
}
uint16_t
RC_Channel::read() const
{
return hal.rcin->read(_ch_out);
}
void
RC_Channel::enable_out()
{
hal.rcout->enable_ch(_ch_out);
}
void
RC_Channel::disable_out()
{
hal.rcout->disable_ch(_ch_out);
}
RC_Channel *RC_Channel::rc_channel(uint8_t i)
{
if (i >= RC_MAX_CHANNELS) {
return nullptr;
}
return _rc_ch[i];
}
// return a limit PWM value
uint16_t RC_Channel::get_limit_pwm(LimitValue limit) const
{
switch (limit) {
case RC_CHANNEL_LIMIT_TRIM:
return _radio_trim;
case RC_CHANNEL_LIMIT_MAX:
return get_reverse() ? _radio_min : _radio_max;
case RC_CHANNEL_LIMIT_MIN:
return get_reverse() ? _radio_max : _radio_min;
}
// invalid limit value, return trim
return _radio_trim;
}
/*
Return true if the channel is at trim and within the DZ
*/
bool RC_Channel::in_trim_dz()
{
return is_bounded_int32(_radio_in, _radio_trim - _dead_zone, _radio_trim + _dead_zone);
}
/*
return the current radio_out value normalised as a float with 1.0
being full output and 0.0 being zero output, taking into account
output type and reversals
For angle outputs the returned value is from -1 to 1
For range outputs the returned value is from 0 to 1
*/
float RC_Channel::get_radio_out_normalised(uint16_t pwm) const
{
if (_radio_max <= _radio_min) {
return 0;
}
float ret;
if (_type_out == RC_CHANNEL_TYPE_RANGE) {
if (pwm <= _radio_min) {
ret = 0;
} else if (pwm >= _radio_max) {
ret = 1;
} else {
ret = (pwm - _radio_min) / float(_radio_max - _radio_min);
}
if (_reverse == -1) {
ret = 1 - ret;
}
} else {
if (pwm < _radio_trim) {
ret = -(_radio_trim - pwm) / float(_radio_trim - _radio_min);
} else {
ret = (pwm - _radio_trim) / float(_radio_max - _radio_trim);
}
if (_reverse == -1) {
ret = -ret;
}
}
return ret;
}