mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-21 16:18:29 -04:00
a1c117360c
All Kalman gain calculations now explicity set gains for deactivated states to zero. Previous use of loops to set gains to zero have been replaced with more efficient memset operations.
1200 lines
63 KiB
C++
1200 lines
63 KiB
C++
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_150
|
|
|
|
#include "AP_NavEKF3.h"
|
|
#include "AP_NavEKF3_core.h"
|
|
#include <AP_AHRS/AP_AHRS.h>
|
|
#include <AP_Vehicle/AP_Vehicle.h>
|
|
#include <GCS_MAVLink/GCS.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
/********************************************************
|
|
* RESET FUNCTIONS *
|
|
********************************************************/
|
|
|
|
// Control reset of yaw and magnetic field states
|
|
void NavEKF3_core::controlMagYawReset()
|
|
{
|
|
|
|
// Vehicles that can use a zero sideslip assumption (Planes) are a special case
|
|
// They can use the GPS velocity to recover from bad initial compass data
|
|
// This allows recovery for heading alignment errors due to compass faults
|
|
if (assume_zero_sideslip() && !finalInflightYawInit && inFlight ) {
|
|
gpsYawResetRequest = true;
|
|
return;
|
|
} else {
|
|
gpsYawResetRequest = false;
|
|
}
|
|
|
|
// Quaternion and delta rotation vector that are re-used for different calculations
|
|
Vector3f deltaRotVecTemp;
|
|
Quaternion deltaQuatTemp;
|
|
|
|
bool flightResetAllowed = false;
|
|
bool initialResetAllowed = false;
|
|
if (!finalInflightYawInit) {
|
|
// Use a quaternion division to calculate the delta quaternion between the rotation at the current and last time
|
|
deltaQuatTemp = stateStruct.quat / prevQuatMagReset;
|
|
prevQuatMagReset = stateStruct.quat;
|
|
|
|
// convert the quaternion to a rotation vector and find its length
|
|
deltaQuatTemp.to_axis_angle(deltaRotVecTemp);
|
|
|
|
// check if the spin rate is OK - high spin rates can cause angular alignment errors
|
|
bool angRateOK = deltaRotVecTemp.length() < 0.1745f;
|
|
|
|
initialResetAllowed = angRateOK;
|
|
flightResetAllowed = angRateOK && !onGround;
|
|
|
|
}
|
|
|
|
// Check if conditions for a interim or final yaw/mag reset are met
|
|
bool finalResetRequest = false;
|
|
bool interimResetRequest = false;
|
|
if (flightResetAllowed && !assume_zero_sideslip()) {
|
|
// check that we have reached a height where ground magnetic interference effects are insignificant
|
|
// and can perform a final reset of the yaw and field states
|
|
finalResetRequest = (stateStruct.position.z - posDownAtTakeoff) < -5.0f;
|
|
|
|
// check for increasing height
|
|
bool hgtIncreasing = (posDownAtLastMagReset-stateStruct.position.z) > 0.5f;
|
|
float yawInnovIncrease = fabsf(innovYaw) - fabsf(yawInnovAtLastMagReset);
|
|
|
|
// check for increasing yaw innovations
|
|
bool yawInnovIncreasing = yawInnovIncrease > 0.25f;
|
|
|
|
// check that the yaw innovations haven't been caused by a large change in attitude
|
|
deltaQuatTemp = quatAtLastMagReset / stateStruct.quat;
|
|
deltaQuatTemp.to_axis_angle(deltaRotVecTemp);
|
|
bool largeAngleChange = deltaRotVecTemp.length() > yawInnovIncrease;
|
|
|
|
// if yaw innovations and height have increased and we haven't rotated much
|
|
// then we are climbing away from a ground based magnetic anomaly and need to reset
|
|
interimResetRequest = hgtIncreasing && yawInnovIncreasing && !largeAngleChange;
|
|
}
|
|
|
|
// an initial reset is required if we have not yet aligned the yaw angle
|
|
bool initialResetRequest = initialResetAllowed && !yawAlignComplete;
|
|
|
|
// a combined yaw angle and magnetic field reset can be initiated by:
|
|
magYawResetRequest = magYawResetRequest || // an external request
|
|
initialResetRequest || // an initial alignment performed by all vehicle types using magnetometer
|
|
interimResetRequest || // an interim alignment required to recover from ground based magnetic anomaly
|
|
finalResetRequest; // the final reset when we have acheived enough height to be in stable magnetic field environment
|
|
|
|
// Perform a reset of magnetic field states and reset yaw to corrected magnetic heading
|
|
if (magYawResetRequest || magStateResetRequest) {
|
|
|
|
// get the euler angles from the current state estimate
|
|
Vector3f eulerAngles;
|
|
stateStruct.quat.to_euler(eulerAngles.x, eulerAngles.y, eulerAngles.z);
|
|
|
|
// Use the Euler angles and magnetometer measurement to update the magnetic field states
|
|
// and get an updated quaternion
|
|
Quaternion newQuat = calcQuatAndFieldStates(eulerAngles.x, eulerAngles.y);
|
|
|
|
// if a yaw reset has been requested, apply the updated quaternion to the current state
|
|
if (magYawResetRequest) {
|
|
// previous value used to calculate a reset delta
|
|
Quaternion prevQuat = stateStruct.quat;
|
|
|
|
// calculate the variance for the rotation estimate expressed as a rotation vector
|
|
// this will be used later to reset the quaternion state covariances
|
|
Vector3f angleErrVarVec = calcRotVecVariances();
|
|
|
|
// update the quaternion states using the new yaw angle
|
|
stateStruct.quat = newQuat;
|
|
|
|
// update the yaw angle variance using the variance of the measurement
|
|
angleErrVarVec.z = sq(MAX(frontend->_yawNoise, 1.0e-2f));
|
|
|
|
// reset the quaternion covariances using the rotation vector variances
|
|
initialiseQuatCovariances(angleErrVarVec);
|
|
|
|
// calculate the change in the quaternion state and apply it to the ouput history buffer
|
|
prevQuat = stateStruct.quat/prevQuat;
|
|
StoreQuatRotate(prevQuat);
|
|
|
|
// send initial alignment status to console
|
|
if (!yawAlignComplete) {
|
|
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "EKF3 IMU%u initial yaw alignment complete\n",(unsigned)imu_index);
|
|
}
|
|
|
|
// send in-flight yaw alignment status to console
|
|
if (finalResetRequest) {
|
|
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "EKF3 IMU%u in-flight yaw alignment complete\n",(unsigned)imu_index);
|
|
} else if (interimResetRequest) {
|
|
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_WARNING, "EKF3 IMU%u ground mag anomaly, yaw re-aligned\n",(unsigned)imu_index);
|
|
}
|
|
|
|
// update the yaw reset completed status
|
|
recordYawReset();
|
|
|
|
// clear the yaw reset request flag
|
|
magYawResetRequest = false;
|
|
|
|
// clear the complete flags if an interim reset has been performed to allow subsequent
|
|
// and final reset to occur
|
|
if (interimResetRequest) {
|
|
finalInflightYawInit = false;
|
|
finalInflightMagInit = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// this function is used to do a forced re-alignment of the yaw angle to align with the horizontal velocity
|
|
// vector from GPS. It is used to align the yaw angle after launch or takeoff.
|
|
void NavEKF3_core::realignYawGPS()
|
|
{
|
|
// get quaternion from existing filter states and calculate roll, pitch and yaw angles
|
|
Vector3f eulerAngles;
|
|
stateStruct.quat.to_euler(eulerAngles.x, eulerAngles.y, eulerAngles.z);
|
|
|
|
if ((sq(gpsDataDelayed.vel.x) + sq(gpsDataDelayed.vel.y)) > 25.0f) {
|
|
// calculate course yaw angle
|
|
float velYaw = atan2f(stateStruct.velocity.y,stateStruct.velocity.x);
|
|
|
|
// calculate course yaw angle from GPS velocity
|
|
float gpsYaw = atan2f(gpsDataDelayed.vel.y,gpsDataDelayed.vel.x);
|
|
|
|
// Check the yaw angles for consistency
|
|
float yawErr = MAX(fabsf(wrap_PI(gpsYaw - velYaw)),fabsf(wrap_PI(gpsYaw - eulerAngles.z)));
|
|
|
|
// If the angles disagree by more than 45 degrees and GPS innovations are large or no previous yaw alignment, we declare the magnetic yaw as bad
|
|
badMagYaw = ((yawErr > 0.7854f) && (velTestRatio > 1.0f) && (PV_AidingMode == AID_ABSOLUTE)) || !yawAlignComplete;
|
|
|
|
// correct yaw angle using GPS ground course if compass yaw bad
|
|
if (badMagYaw) {
|
|
|
|
// calculate the variance for the rotation estimate expressed as a rotation vector
|
|
// this will be used later to reset the quaternion state covariances
|
|
Vector3f angleErrVarVec = calcRotVecVariances();
|
|
|
|
// calculate new filter quaternion states from Euler angles
|
|
stateStruct.quat.from_euler(eulerAngles.x, eulerAngles.y, gpsYaw);
|
|
|
|
// reset the velocity and position states as they will be inaccurate due to bad yaw
|
|
velResetSource = GPS;
|
|
ResetVelocity();
|
|
posResetSource = GPS;
|
|
ResetPosition();
|
|
|
|
// set the yaw angle variance to a larger value to reflect the uncertainty in yaw
|
|
angleErrVarVec.z = sq(radians(45.0f));
|
|
|
|
// reset the quaternion covariances using the rotation vector variances
|
|
zeroRows(P,0,3);
|
|
zeroCols(P,0,3);
|
|
initialiseQuatCovariances(angleErrVarVec);
|
|
|
|
// send yaw alignment information to console
|
|
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "EKF3 IMU%u yaw aligned to GPS velocity",(unsigned)imu_index);
|
|
|
|
|
|
// record the yaw reset event
|
|
recordYawReset();
|
|
|
|
// clear all pending yaw reset requests
|
|
gpsYawResetRequest = false;
|
|
magYawResetRequest = false;
|
|
|
|
if (use_compass()) {
|
|
// request a mag field reset which may enable us to use the magnetoemter if the previous fault was due to bad initialisation
|
|
magStateResetRequest = true;
|
|
// clear the all sensors failed status so that the magnetometers sensors get a second chance now that we are flying
|
|
allMagSensorsFailed = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/********************************************************
|
|
* FUSE MEASURED_DATA *
|
|
********************************************************/
|
|
|
|
// select fusion of magnetometer data
|
|
void NavEKF3_core::SelectMagFusion()
|
|
{
|
|
// start performance timer
|
|
hal.util->perf_begin(_perf_FuseMagnetometer);
|
|
|
|
// clear the flag that lets other processes know that the expensive magnetometer fusion operation has been perfomred on that time step
|
|
// used for load levelling
|
|
magFusePerformed = false;
|
|
|
|
// check for and read new magnetometer measurements
|
|
readMagData();
|
|
|
|
// If we are using the compass and the magnetometer has been unhealthy for too long we declare a timeout
|
|
if (magHealth) {
|
|
magTimeout = false;
|
|
lastHealthyMagTime_ms = imuSampleTime_ms;
|
|
} else if ((imuSampleTime_ms - lastHealthyMagTime_ms) > frontend->magFailTimeLimit_ms && use_compass()) {
|
|
magTimeout = true;
|
|
}
|
|
|
|
// check for availability of magnetometer data to fuse
|
|
magDataToFuse = storedMag.recall(magDataDelayed,imuDataDelayed.time_ms);
|
|
|
|
// Control reset of yaw and magnetic field states if we are using compass data
|
|
if (magDataToFuse && use_compass()) {
|
|
controlMagYawReset();
|
|
}
|
|
|
|
// determine if conditions are right to start a new fusion cycle
|
|
// wait until the EKF time horizon catches up with the measurement
|
|
bool dataReady = (magDataToFuse && statesInitialised && use_compass() && yawAlignComplete);
|
|
if (dataReady) {
|
|
// use the simple method of declination to maintain heading if we cannot use the magnetic field states
|
|
if(inhibitMagStates || magStateResetRequest || !magStateInitComplete) {
|
|
fuseEulerYaw();
|
|
// zero the test ratio output from the inactive 3-axis magnetometer fusion
|
|
magTestRatio.zero();
|
|
} else {
|
|
// if we are not doing aiding with earth relative observations (eg GPS) then the declination is
|
|
// maintained by fusing declination as a synthesised observation
|
|
if (PV_AidingMode != AID_ABSOLUTE) {
|
|
FuseDeclination(0.34f);
|
|
}
|
|
// fuse the three magnetometer componenents sequentially
|
|
hal.util->perf_begin(_perf_test[0]);
|
|
for (mag_state.obsIndex = 0; mag_state.obsIndex <= 2; mag_state.obsIndex++) {
|
|
FuseMagnetometer();
|
|
// don't continue fusion if unhealthy
|
|
if (!magHealth) {
|
|
hal.util->perf_end(_perf_test[0]);
|
|
break;
|
|
}
|
|
}
|
|
hal.util->perf_end(_perf_test[0]);
|
|
// zero the test ratio output from the inactive simple magnetometer yaw fusion
|
|
yawTestRatio = 0.0f;
|
|
}
|
|
}
|
|
|
|
// If we have no magnetometer, fuse in a synthetic heading measurement at 7Hz to prevent the filter covariances
|
|
// from becoming badly conditioned. For planes we only do this on-ground because they can align the yaw from GPS when
|
|
// airborne. For other platform types we do this all the time.
|
|
if (!use_compass()) {
|
|
if ((onGround || !assume_zero_sideslip()) && (imuSampleTime_ms - lastSynthYawTime_ms > 140)) {
|
|
fuseEulerYaw();
|
|
magTestRatio.zero();
|
|
yawTestRatio = 0.0f;
|
|
lastSynthYawTime_ms = imuSampleTime_ms;
|
|
}
|
|
}
|
|
|
|
// If the final yaw reset has been performed and the state variances are sufficiently low
|
|
// record that the earth field has been learned.
|
|
if (!magFieldLearned && finalInflightMagInit) {
|
|
magFieldLearned = (P[16][16] < sq(0.01f)) && (P[17][17] < sq(0.01f)) && (P[18][18] < sq(0.01f));
|
|
}
|
|
|
|
// record the last learned field variances
|
|
if (magFieldLearned && !inhibitMagStates) {
|
|
earthMagFieldVar.x = P[16][16];
|
|
earthMagFieldVar.y = P[17][17];
|
|
earthMagFieldVar.z = P[18][18];
|
|
bodyMagFieldVar.x = P[19][19];
|
|
bodyMagFieldVar.y = P[20][20];
|
|
bodyMagFieldVar.z = P[21][21];
|
|
}
|
|
|
|
// stop performance timer
|
|
hal.util->perf_end(_perf_FuseMagnetometer);
|
|
}
|
|
|
|
/*
|
|
* Fuse magnetometer measurements using explicit algebraic equations generated with Matlab symbolic toolbox.
|
|
* The script file used to generate these and other equations in this filter can be found here:
|
|
* https://github.com/PX4/ecl/blob/master/matlab/scripts/Inertial%20Nav%20EKF/GenerateNavFilterEquations.m
|
|
*/
|
|
void NavEKF3_core::FuseMagnetometer()
|
|
{
|
|
// declarations
|
|
ftype &q0 = mag_state.q0;
|
|
ftype &q1 = mag_state.q1;
|
|
ftype &q2 = mag_state.q2;
|
|
ftype &q3 = mag_state.q3;
|
|
ftype &magN = mag_state.magN;
|
|
ftype &magE = mag_state.magE;
|
|
ftype &magD = mag_state.magD;
|
|
ftype &magXbias = mag_state.magXbias;
|
|
ftype &magYbias = mag_state.magYbias;
|
|
ftype &magZbias = mag_state.magZbias;
|
|
uint8_t &obsIndex = mag_state.obsIndex;
|
|
Matrix3f &DCM = mag_state.DCM;
|
|
Vector3f &MagPred = mag_state.MagPred;
|
|
ftype &R_MAG = mag_state.R_MAG;
|
|
ftype *SH_MAG = &mag_state.SH_MAG[0];
|
|
Vector24 H_MAG;
|
|
Vector5 SK_MX;
|
|
Vector5 SK_MY;
|
|
Vector5 SK_MZ;
|
|
|
|
// perform sequential fusion of magnetometer measurements.
|
|
// this assumes that the errors in the different components are
|
|
// uncorrelated which is not true, however in the absence of covariance
|
|
// data fit is the only assumption we can make
|
|
// so we might as well take advantage of the computational efficiencies
|
|
// associated with sequential fusion
|
|
// calculate observation jacobians and Kalman gains
|
|
|
|
// copy required states to local variable names
|
|
q0 = stateStruct.quat[0];
|
|
q1 = stateStruct.quat[1];
|
|
q2 = stateStruct.quat[2];
|
|
q3 = stateStruct.quat[3];
|
|
magN = stateStruct.earth_magfield[0];
|
|
magE = stateStruct.earth_magfield[1];
|
|
magD = stateStruct.earth_magfield[2];
|
|
magXbias = stateStruct.body_magfield[0];
|
|
magYbias = stateStruct.body_magfield[1];
|
|
magZbias = stateStruct.body_magfield[2];
|
|
|
|
// rotate predicted earth components into body axes and calculate
|
|
// predicted measurements
|
|
DCM[0][0] = q0*q0 + q1*q1 - q2*q2 - q3*q3;
|
|
DCM[0][1] = 2.0f*(q1*q2 + q0*q3);
|
|
DCM[0][2] = 2.0f*(q1*q3-q0*q2);
|
|
DCM[1][0] = 2.0f*(q1*q2 - q0*q3);
|
|
DCM[1][1] = q0*q0 - q1*q1 + q2*q2 - q3*q3;
|
|
DCM[1][2] = 2.0f*(q2*q3 + q0*q1);
|
|
DCM[2][0] = 2.0f*(q1*q3 + q0*q2);
|
|
DCM[2][1] = 2.0f*(q2*q3 - q0*q1);
|
|
DCM[2][2] = q0*q0 - q1*q1 - q2*q2 + q3*q3;
|
|
MagPred[0] = DCM[0][0]*magN + DCM[0][1]*magE + DCM[0][2]*magD + magXbias;
|
|
MagPred[1] = DCM[1][0]*magN + DCM[1][1]*magE + DCM[1][2]*magD + magYbias;
|
|
MagPred[2] = DCM[2][0]*magN + DCM[2][1]*magE + DCM[2][2]*magD + magZbias;
|
|
|
|
// calculate the measurement innovation for each axis
|
|
for (uint8_t i = 0; i<=2; i++) {
|
|
innovMag[i] = MagPred[i] - magDataDelayed.mag[i];
|
|
}
|
|
|
|
// scale magnetometer observation error with total angular rate to allow for timing errors
|
|
R_MAG = sq(constrain_float(frontend->_magNoise, 0.01f, 0.5f)) + sq(frontend->magVarRateScale*imuDataDelayed.delAng.length() / imuDataDelayed.delAngDT);
|
|
|
|
// calculate common expressions used to calculate observation jacobians an innovation variance for each component
|
|
SH_MAG[0] = 2.0f*magD*q3 + 2.0f*magE*q2 + 2.0f*magN*q1;
|
|
SH_MAG[1] = 2.0f*magD*q0 - 2.0f*magE*q1 + 2.0f*magN*q2;
|
|
SH_MAG[2] = 2.0f*magD*q1 + 2.0f*magE*q0 - 2.0f*magN*q3;
|
|
SH_MAG[3] = sq(q3);
|
|
SH_MAG[4] = sq(q2);
|
|
SH_MAG[5] = sq(q1);
|
|
SH_MAG[6] = sq(q0);
|
|
SH_MAG[7] = 2.0f*magN*q0;
|
|
SH_MAG[8] = 2.0f*magE*q3;
|
|
|
|
// Calculate the innovation variance for each axis
|
|
// X axis
|
|
varInnovMag[0] = (P[19][19] + R_MAG + P[1][19]*SH_MAG[0] - P[2][19]*SH_MAG[1] + P[3][19]*SH_MAG[2] - P[16][19]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + (2.0f*q0*q3 + 2.0f*q1*q2)*(P[19][17] + P[1][17]*SH_MAG[0] - P[2][17]*SH_MAG[1] + P[3][17]*SH_MAG[2] - P[16][17]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][17]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][17]*(2.0f*q0*q2 - 2.0f*q1*q3) + P[0][17]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - (2.0f*q0*q2 - 2.0f*q1*q3)*(P[19][18] + P[1][18]*SH_MAG[0] - P[2][18]*SH_MAG[1] + P[3][18]*SH_MAG[2] - P[16][18]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][18]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][18]*(2.0f*q0*q2 - 2.0f*q1*q3) + P[0][18]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + (SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)*(P[19][0] + P[1][0]*SH_MAG[0] - P[2][0]*SH_MAG[1] + P[3][0]*SH_MAG[2] - P[16][0]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][0]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][0]*(2.0f*q0*q2 - 2.0f*q1*q3) + P[0][0]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + P[17][19]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][19]*(2.0f*q0*q2 - 2.0f*q1*q3) + SH_MAG[0]*(P[19][1] + P[1][1]*SH_MAG[0] - P[2][1]*SH_MAG[1] + P[3][1]*SH_MAG[2] - P[16][1]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][1]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][1]*(2.0f*q0*q2 - 2.0f*q1*q3) + P[0][1]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - SH_MAG[1]*(P[19][2] + P[1][2]*SH_MAG[0] - P[2][2]*SH_MAG[1] + P[3][2]*SH_MAG[2] - P[16][2]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][2]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][2]*(2.0f*q0*q2 - 2.0f*q1*q3) + P[0][2]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + SH_MAG[2]*(P[19][3] + P[1][3]*SH_MAG[0] - P[2][3]*SH_MAG[1] + P[3][3]*SH_MAG[2] - P[16][3]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][3]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][3]*(2.0f*q0*q2 - 2.0f*q1*q3) + P[0][3]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - (SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6])*(P[19][16] + P[1][16]*SH_MAG[0] - P[2][16]*SH_MAG[1] + P[3][16]*SH_MAG[2] - P[16][16]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][16]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][16]*(2.0f*q0*q2 - 2.0f*q1*q3) + P[0][16]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + P[0][19]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2));
|
|
if (varInnovMag[0] >= R_MAG) {
|
|
faultStatus.bad_xmag = false;
|
|
} else {
|
|
// the calculation is badly conditioned, so we cannot perform fusion on this step
|
|
// we reset the covariance matrix and try again next measurement
|
|
CovarianceInit();
|
|
faultStatus.bad_xmag = true;
|
|
return;
|
|
}
|
|
|
|
// Y axis
|
|
varInnovMag[1] = (P[20][20] + R_MAG + P[0][20]*SH_MAG[2] + P[1][20]*SH_MAG[1] + P[2][20]*SH_MAG[0] - P[17][20]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - (2.0f*q0*q3 - 2.0f*q1*q2)*(P[20][16] + P[0][16]*SH_MAG[2] + P[1][16]*SH_MAG[1] + P[2][16]*SH_MAG[0] - P[17][16]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][16]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][16]*(2.0f*q0*q1 + 2.0f*q2*q3) - P[3][16]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + (2.0f*q0*q1 + 2.0f*q2*q3)*(P[20][18] + P[0][18]*SH_MAG[2] + P[1][18]*SH_MAG[1] + P[2][18]*SH_MAG[0] - P[17][18]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][18]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][18]*(2.0f*q0*q1 + 2.0f*q2*q3) - P[3][18]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - (SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)*(P[20][3] + P[0][3]*SH_MAG[2] + P[1][3]*SH_MAG[1] + P[2][3]*SH_MAG[0] - P[17][3]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][3]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][3]*(2.0f*q0*q1 + 2.0f*q2*q3) - P[3][3]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - P[16][20]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][20]*(2.0f*q0*q1 + 2.0f*q2*q3) + SH_MAG[2]*(P[20][0] + P[0][0]*SH_MAG[2] + P[1][0]*SH_MAG[1] + P[2][0]*SH_MAG[0] - P[17][0]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][0]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][0]*(2.0f*q0*q1 + 2.0f*q2*q3) - P[3][0]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + SH_MAG[1]*(P[20][1] + P[0][1]*SH_MAG[2] + P[1][1]*SH_MAG[1] + P[2][1]*SH_MAG[0] - P[17][1]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][1]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][1]*(2.0f*q0*q1 + 2.0f*q2*q3) - P[3][1]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + SH_MAG[0]*(P[20][2] + P[0][2]*SH_MAG[2] + P[1][2]*SH_MAG[1] + P[2][2]*SH_MAG[0] - P[17][2]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][2]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][2]*(2.0f*q0*q1 + 2.0f*q2*q3) - P[3][2]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - (SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6])*(P[20][17] + P[0][17]*SH_MAG[2] + P[1][17]*SH_MAG[1] + P[2][17]*SH_MAG[0] - P[17][17]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][17]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][17]*(2.0f*q0*q1 + 2.0f*q2*q3) - P[3][17]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - P[3][20]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2));
|
|
if (varInnovMag[1] >= R_MAG) {
|
|
faultStatus.bad_ymag = false;
|
|
} else {
|
|
// the calculation is badly conditioned, so we cannot perform fusion on this step
|
|
// we reset the covariance matrix and try again next measurement
|
|
CovarianceInit();
|
|
faultStatus.bad_ymag = true;
|
|
return;
|
|
}
|
|
|
|
// Z axis
|
|
varInnovMag[2] = (P[21][21] + R_MAG + P[0][21]*SH_MAG[1] - P[1][21]*SH_MAG[2] + P[3][21]*SH_MAG[0] + P[18][21]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + (2.0f*q0*q2 + 2.0f*q1*q3)*(P[21][16] + P[0][16]*SH_MAG[1] - P[1][16]*SH_MAG[2] + P[3][16]*SH_MAG[0] + P[18][16]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][16]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][16]*(2.0f*q0*q1 - 2.0f*q2*q3) + P[2][16]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - (2.0f*q0*q1 - 2.0f*q2*q3)*(P[21][17] + P[0][17]*SH_MAG[1] - P[1][17]*SH_MAG[2] + P[3][17]*SH_MAG[0] + P[18][17]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][17]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][17]*(2.0f*q0*q1 - 2.0f*q2*q3) + P[2][17]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + (SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)*(P[21][2] + P[0][2]*SH_MAG[1] - P[1][2]*SH_MAG[2] + P[3][2]*SH_MAG[0] + P[18][2]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][2]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][2]*(2.0f*q0*q1 - 2.0f*q2*q3) + P[2][2]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + P[16][21]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][21]*(2.0f*q0*q1 - 2.0f*q2*q3) + SH_MAG[1]*(P[21][0] + P[0][0]*SH_MAG[1] - P[1][0]*SH_MAG[2] + P[3][0]*SH_MAG[0] + P[18][0]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][0]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][0]*(2.0f*q0*q1 - 2.0f*q2*q3) + P[2][0]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - SH_MAG[2]*(P[21][1] + P[0][1]*SH_MAG[1] - P[1][1]*SH_MAG[2] + P[3][1]*SH_MAG[0] + P[18][1]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][1]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][1]*(2.0f*q0*q1 - 2.0f*q2*q3) + P[2][1]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + SH_MAG[0]*(P[21][3] + P[0][3]*SH_MAG[1] - P[1][3]*SH_MAG[2] + P[3][3]*SH_MAG[0] + P[18][3]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][3]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][3]*(2.0f*q0*q1 - 2.0f*q2*q3) + P[2][3]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + (SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6])*(P[21][18] + P[0][18]*SH_MAG[1] - P[1][18]*SH_MAG[2] + P[3][18]*SH_MAG[0] + P[18][18]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][18]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][18]*(2.0f*q0*q1 - 2.0f*q2*q3) + P[2][18]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + P[2][21]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2));
|
|
if (varInnovMag[2] >= R_MAG) {
|
|
faultStatus.bad_zmag = false;
|
|
} else {
|
|
// the calculation is badly conditioned, so we cannot perform fusion on this step
|
|
// we reset the covariance matrix and try again next measurement
|
|
CovarianceInit();
|
|
faultStatus.bad_zmag = true;
|
|
return;
|
|
}
|
|
|
|
// calculate the innovation test ratios
|
|
for (uint8_t i = 0; i<=2; i++) {
|
|
magTestRatio[i] = sq(innovMag[i]) / (sq(MAX(0.01f * (float)frontend->_magInnovGate, 1.0f)) * varInnovMag[i]);
|
|
}
|
|
|
|
// check the last values from all components and set magnetometer health accordingly
|
|
magHealth = (magTestRatio[0] < 1.0f && magTestRatio[1] < 1.0f && magTestRatio[2] < 1.0f);
|
|
|
|
// if the magnetometer is unhealthy, do not proceed further
|
|
if (!magHealth) {
|
|
return;
|
|
}
|
|
|
|
for (obsIndex = 0; obsIndex <= 2; obsIndex++) {
|
|
|
|
if (obsIndex == 0) {
|
|
|
|
for (uint8_t i = 0; i<=stateIndexLim; i++) H_MAG[i] = 0.0f;
|
|
H_MAG[0] = SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2;
|
|
H_MAG[1] = SH_MAG[0];
|
|
H_MAG[2] = -SH_MAG[1];
|
|
H_MAG[3] = SH_MAG[2];
|
|
H_MAG[16] = SH_MAG[5] - SH_MAG[4] - SH_MAG[3] + SH_MAG[6];
|
|
H_MAG[17] = 2.0f*q0*q3 + 2.0f*q1*q2;
|
|
H_MAG[18] = 2.0f*q1*q3 - 2.0f*q0*q2;
|
|
H_MAG[19] = 1.0f;
|
|
|
|
// calculate Kalman gain
|
|
SK_MX[0] = 1.0f / varInnovMag[0];
|
|
SK_MX[1] = SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6];
|
|
SK_MX[2] = SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2;
|
|
SK_MX[3] = 2.0f*q0*q2 - 2.0f*q1*q3;
|
|
SK_MX[4] = 2.0f*q0*q3 + 2.0f*q1*q2;
|
|
|
|
Kfusion[0] = SK_MX[0]*(P[0][19] + P[0][1]*SH_MAG[0] - P[0][2]*SH_MAG[1] + P[0][3]*SH_MAG[2] + P[0][0]*SK_MX[2] - P[0][16]*SK_MX[1] + P[0][17]*SK_MX[4] - P[0][18]*SK_MX[3]);
|
|
Kfusion[1] = SK_MX[0]*(P[1][19] + P[1][1]*SH_MAG[0] - P[1][2]*SH_MAG[1] + P[1][3]*SH_MAG[2] + P[1][0]*SK_MX[2] - P[1][16]*SK_MX[1] + P[1][17]*SK_MX[4] - P[1][18]*SK_MX[3]);
|
|
Kfusion[2] = SK_MX[0]*(P[2][19] + P[2][1]*SH_MAG[0] - P[2][2]*SH_MAG[1] + P[2][3]*SH_MAG[2] + P[2][0]*SK_MX[2] - P[2][16]*SK_MX[1] + P[2][17]*SK_MX[4] - P[2][18]*SK_MX[3]);
|
|
Kfusion[3] = SK_MX[0]*(P[3][19] + P[3][1]*SH_MAG[0] - P[3][2]*SH_MAG[1] + P[3][3]*SH_MAG[2] + P[3][0]*SK_MX[2] - P[3][16]*SK_MX[1] + P[3][17]*SK_MX[4] - P[3][18]*SK_MX[3]);
|
|
Kfusion[4] = SK_MX[0]*(P[4][19] + P[4][1]*SH_MAG[0] - P[4][2]*SH_MAG[1] + P[4][3]*SH_MAG[2] + P[4][0]*SK_MX[2] - P[4][16]*SK_MX[1] + P[4][17]*SK_MX[4] - P[4][18]*SK_MX[3]);
|
|
Kfusion[5] = SK_MX[0]*(P[5][19] + P[5][1]*SH_MAG[0] - P[5][2]*SH_MAG[1] + P[5][3]*SH_MAG[2] + P[5][0]*SK_MX[2] - P[5][16]*SK_MX[1] + P[5][17]*SK_MX[4] - P[5][18]*SK_MX[3]);
|
|
Kfusion[6] = SK_MX[0]*(P[6][19] + P[6][1]*SH_MAG[0] - P[6][2]*SH_MAG[1] + P[6][3]*SH_MAG[2] + P[6][0]*SK_MX[2] - P[6][16]*SK_MX[1] + P[6][17]*SK_MX[4] - P[6][18]*SK_MX[3]);
|
|
Kfusion[7] = SK_MX[0]*(P[7][19] + P[7][1]*SH_MAG[0] - P[7][2]*SH_MAG[1] + P[7][3]*SH_MAG[2] + P[7][0]*SK_MX[2] - P[7][16]*SK_MX[1] + P[7][17]*SK_MX[4] - P[7][18]*SK_MX[3]);
|
|
Kfusion[8] = SK_MX[0]*(P[8][19] + P[8][1]*SH_MAG[0] - P[8][2]*SH_MAG[1] + P[8][3]*SH_MAG[2] + P[8][0]*SK_MX[2] - P[8][16]*SK_MX[1] + P[8][17]*SK_MX[4] - P[8][18]*SK_MX[3]);
|
|
Kfusion[9] = SK_MX[0]*(P[9][19] + P[9][1]*SH_MAG[0] - P[9][2]*SH_MAG[1] + P[9][3]*SH_MAG[2] + P[9][0]*SK_MX[2] - P[9][16]*SK_MX[1] + P[9][17]*SK_MX[4] - P[9][18]*SK_MX[3]);
|
|
|
|
if (!inhibitDelAngBiasStates) {
|
|
Kfusion[10] = SK_MX[0]*(P[10][19] + P[10][1]*SH_MAG[0] - P[10][2]*SH_MAG[1] + P[10][3]*SH_MAG[2] + P[10][0]*SK_MX[2] - P[10][16]*SK_MX[1] + P[10][17]*SK_MX[4] - P[10][18]*SK_MX[3]);
|
|
Kfusion[11] = SK_MX[0]*(P[11][19] + P[11][1]*SH_MAG[0] - P[11][2]*SH_MAG[1] + P[11][3]*SH_MAG[2] + P[11][0]*SK_MX[2] - P[11][16]*SK_MX[1] + P[11][17]*SK_MX[4] - P[11][18]*SK_MX[3]);
|
|
Kfusion[12] = SK_MX[0]*(P[12][19] + P[12][1]*SH_MAG[0] - P[12][2]*SH_MAG[1] + P[12][3]*SH_MAG[2] + P[12][0]*SK_MX[2] - P[12][16]*SK_MX[1] + P[12][17]*SK_MX[4] - P[12][18]*SK_MX[3]);
|
|
} else {
|
|
// zero indexes 10 to 12 = 3*4 bytes
|
|
memset(&Kfusion[10], 0, 12);
|
|
}
|
|
|
|
if (!inhibitDelVelBiasStates) {
|
|
Kfusion[13] = SK_MX[0]*(P[13][19] + P[13][1]*SH_MAG[0] - P[13][2]*SH_MAG[1] + P[13][3]*SH_MAG[2] + P[13][0]*SK_MX[2] - P[13][16]*SK_MX[1] + P[13][17]*SK_MX[4] - P[13][18]*SK_MX[3]);
|
|
Kfusion[14] = SK_MX[0]*(P[14][19] + P[14][1]*SH_MAG[0] - P[14][2]*SH_MAG[1] + P[14][3]*SH_MAG[2] + P[14][0]*SK_MX[2] - P[14][16]*SK_MX[1] + P[14][17]*SK_MX[4] - P[14][18]*SK_MX[3]);
|
|
Kfusion[15] = SK_MX[0]*(P[15][19] + P[15][1]*SH_MAG[0] - P[15][2]*SH_MAG[1] + P[15][3]*SH_MAG[2] + P[15][0]*SK_MX[2] - P[15][16]*SK_MX[1] + P[15][17]*SK_MX[4] - P[15][18]*SK_MX[3]);
|
|
} else {
|
|
// zero indexes 13 to 15 = 3*4 bytes
|
|
memset(&Kfusion[13], 0, 12);
|
|
}
|
|
// zero Kalman gains to inhibit magnetic field state estimation
|
|
if (!inhibitMagStates) {
|
|
Kfusion[16] = SK_MX[0]*(P[16][19] + P[16][1]*SH_MAG[0] - P[16][2]*SH_MAG[1] + P[16][3]*SH_MAG[2] + P[16][0]*SK_MX[2] - P[16][16]*SK_MX[1] + P[16][17]*SK_MX[4] - P[16][18]*SK_MX[3]);
|
|
Kfusion[17] = SK_MX[0]*(P[17][19] + P[17][1]*SH_MAG[0] - P[17][2]*SH_MAG[1] + P[17][3]*SH_MAG[2] + P[17][0]*SK_MX[2] - P[17][16]*SK_MX[1] + P[17][17]*SK_MX[4] - P[17][18]*SK_MX[3]);
|
|
Kfusion[18] = SK_MX[0]*(P[18][19] + P[18][1]*SH_MAG[0] - P[18][2]*SH_MAG[1] + P[18][3]*SH_MAG[2] + P[18][0]*SK_MX[2] - P[18][16]*SK_MX[1] + P[18][17]*SK_MX[4] - P[18][18]*SK_MX[3]);
|
|
Kfusion[19] = SK_MX[0]*(P[19][19] + P[19][1]*SH_MAG[0] - P[19][2]*SH_MAG[1] + P[19][3]*SH_MAG[2] + P[19][0]*SK_MX[2] - P[19][16]*SK_MX[1] + P[19][17]*SK_MX[4] - P[19][18]*SK_MX[3]);
|
|
Kfusion[20] = SK_MX[0]*(P[20][19] + P[20][1]*SH_MAG[0] - P[20][2]*SH_MAG[1] + P[20][3]*SH_MAG[2] + P[20][0]*SK_MX[2] - P[20][16]*SK_MX[1] + P[20][17]*SK_MX[4] - P[20][18]*SK_MX[3]);
|
|
Kfusion[21] = SK_MX[0]*(P[21][19] + P[21][1]*SH_MAG[0] - P[21][2]*SH_MAG[1] + P[21][3]*SH_MAG[2] + P[21][0]*SK_MX[2] - P[21][16]*SK_MX[1] + P[21][17]*SK_MX[4] - P[21][18]*SK_MX[3]);
|
|
} else {
|
|
// zero indexes 16 to 21 = 6*4 bytes
|
|
memset(&Kfusion[16], 0, 24);
|
|
}
|
|
|
|
// zero Kalman gains to inhibit wind state estimation
|
|
if (!inhibitWindStates) {
|
|
Kfusion[22] = SK_MX[0]*(P[22][19] + P[22][1]*SH_MAG[0] - P[22][2]*SH_MAG[1] + P[22][3]*SH_MAG[2] + P[22][0]*SK_MX[2] - P[22][16]*SK_MX[1] + P[22][17]*SK_MX[4] - P[22][18]*SK_MX[3]);
|
|
Kfusion[23] = SK_MX[0]*(P[23][19] + P[23][1]*SH_MAG[0] - P[23][2]*SH_MAG[1] + P[23][3]*SH_MAG[2] + P[23][0]*SK_MX[2] - P[23][16]*SK_MX[1] + P[23][17]*SK_MX[4] - P[23][18]*SK_MX[3]);
|
|
} else {
|
|
// zero indexes 22 to 23 = 2*4 bytes
|
|
memset(&Kfusion[22], 0, 8);
|
|
}
|
|
|
|
// set flags to indicate to other processes that fusion has been performed and is required on the next frame
|
|
// this can be used by other fusion processes to avoid fusing on the same frame as this expensive step
|
|
magFusePerformed = true;
|
|
magFuseRequired = true;
|
|
|
|
} else if (obsIndex == 1) { // Fuse Y axis
|
|
|
|
// calculate observation jacobians
|
|
for (uint8_t i = 0; i<=stateIndexLim; i++) H_MAG[i] = 0.0f;
|
|
H_MAG[0] = SH_MAG[2];
|
|
H_MAG[1] = SH_MAG[1];
|
|
H_MAG[2] = SH_MAG[0];
|
|
H_MAG[3] = 2.0f*magD*q2 - SH_MAG[8] - SH_MAG[7];
|
|
H_MAG[16] = 2.0f*q1*q2 - 2.0f*q0*q3;
|
|
H_MAG[17] = SH_MAG[4] - SH_MAG[3] - SH_MAG[5] + SH_MAG[6];
|
|
H_MAG[18] = 2.0f*q0*q1 + 2.0f*q2*q3;
|
|
H_MAG[20] = 1.0f;
|
|
|
|
// calculate Kalman gain
|
|
SK_MY[0] = 1.0f / varInnovMag[1];
|
|
SK_MY[1] = SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6];
|
|
SK_MY[2] = SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2;
|
|
SK_MY[3] = 2.0f*q0*q3 - 2.0f*q1*q2;
|
|
SK_MY[4] = 2.0f*q0*q1 + 2.0f*q2*q3;
|
|
|
|
Kfusion[0] = SK_MY[0]*(P[0][20] + P[0][0]*SH_MAG[2] + P[0][1]*SH_MAG[1] + P[0][2]*SH_MAG[0] - P[0][3]*SK_MY[2] - P[0][17]*SK_MY[1] - P[0][16]*SK_MY[3] + P[0][18]*SK_MY[4]);
|
|
Kfusion[1] = SK_MY[0]*(P[1][20] + P[1][0]*SH_MAG[2] + P[1][1]*SH_MAG[1] + P[1][2]*SH_MAG[0] - P[1][3]*SK_MY[2] - P[1][17]*SK_MY[1] - P[1][16]*SK_MY[3] + P[1][18]*SK_MY[4]);
|
|
Kfusion[2] = SK_MY[0]*(P[2][20] + P[2][0]*SH_MAG[2] + P[2][1]*SH_MAG[1] + P[2][2]*SH_MAG[0] - P[2][3]*SK_MY[2] - P[2][17]*SK_MY[1] - P[2][16]*SK_MY[3] + P[2][18]*SK_MY[4]);
|
|
Kfusion[3] = SK_MY[0]*(P[3][20] + P[3][0]*SH_MAG[2] + P[3][1]*SH_MAG[1] + P[3][2]*SH_MAG[0] - P[3][3]*SK_MY[2] - P[3][17]*SK_MY[1] - P[3][16]*SK_MY[3] + P[3][18]*SK_MY[4]);
|
|
Kfusion[4] = SK_MY[0]*(P[4][20] + P[4][0]*SH_MAG[2] + P[4][1]*SH_MAG[1] + P[4][2]*SH_MAG[0] - P[4][3]*SK_MY[2] - P[4][17]*SK_MY[1] - P[4][16]*SK_MY[3] + P[4][18]*SK_MY[4]);
|
|
Kfusion[5] = SK_MY[0]*(P[5][20] + P[5][0]*SH_MAG[2] + P[5][1]*SH_MAG[1] + P[5][2]*SH_MAG[0] - P[5][3]*SK_MY[2] - P[5][17]*SK_MY[1] - P[5][16]*SK_MY[3] + P[5][18]*SK_MY[4]);
|
|
Kfusion[6] = SK_MY[0]*(P[6][20] + P[6][0]*SH_MAG[2] + P[6][1]*SH_MAG[1] + P[6][2]*SH_MAG[0] - P[6][3]*SK_MY[2] - P[6][17]*SK_MY[1] - P[6][16]*SK_MY[3] + P[6][18]*SK_MY[4]);
|
|
Kfusion[7] = SK_MY[0]*(P[7][20] + P[7][0]*SH_MAG[2] + P[7][1]*SH_MAG[1] + P[7][2]*SH_MAG[0] - P[7][3]*SK_MY[2] - P[7][17]*SK_MY[1] - P[7][16]*SK_MY[3] + P[7][18]*SK_MY[4]);
|
|
Kfusion[8] = SK_MY[0]*(P[8][20] + P[8][0]*SH_MAG[2] + P[8][1]*SH_MAG[1] + P[8][2]*SH_MAG[0] - P[8][3]*SK_MY[2] - P[8][17]*SK_MY[1] - P[8][16]*SK_MY[3] + P[8][18]*SK_MY[4]);
|
|
Kfusion[9] = SK_MY[0]*(P[9][20] + P[9][0]*SH_MAG[2] + P[9][1]*SH_MAG[1] + P[9][2]*SH_MAG[0] - P[9][3]*SK_MY[2] - P[9][17]*SK_MY[1] - P[9][16]*SK_MY[3] + P[9][18]*SK_MY[4]);
|
|
|
|
if (!inhibitDelAngBiasStates) {
|
|
Kfusion[10] = SK_MY[0]*(P[10][20] + P[10][0]*SH_MAG[2] + P[10][1]*SH_MAG[1] + P[10][2]*SH_MAG[0] - P[10][3]*SK_MY[2] - P[10][17]*SK_MY[1] - P[10][16]*SK_MY[3] + P[10][18]*SK_MY[4]);
|
|
Kfusion[11] = SK_MY[0]*(P[11][20] + P[11][0]*SH_MAG[2] + P[11][1]*SH_MAG[1] + P[11][2]*SH_MAG[0] - P[11][3]*SK_MY[2] - P[11][17]*SK_MY[1] - P[11][16]*SK_MY[3] + P[11][18]*SK_MY[4]);
|
|
Kfusion[12] = SK_MY[0]*(P[12][20] + P[12][0]*SH_MAG[2] + P[12][1]*SH_MAG[1] + P[12][2]*SH_MAG[0] - P[12][3]*SK_MY[2] - P[12][17]*SK_MY[1] - P[12][16]*SK_MY[3] + P[12][18]*SK_MY[4]);
|
|
} else {
|
|
// zero indexes 10 to 12 = 3*4 bytes
|
|
memset(&Kfusion[10], 0, 12);
|
|
}
|
|
|
|
if (!inhibitDelVelBiasStates) {
|
|
Kfusion[13] = SK_MY[0]*(P[13][20] + P[13][0]*SH_MAG[2] + P[13][1]*SH_MAG[1] + P[13][2]*SH_MAG[0] - P[13][3]*SK_MY[2] - P[13][17]*SK_MY[1] - P[13][16]*SK_MY[3] + P[13][18]*SK_MY[4]);
|
|
Kfusion[14] = SK_MY[0]*(P[14][20] + P[14][0]*SH_MAG[2] + P[14][1]*SH_MAG[1] + P[14][2]*SH_MAG[0] - P[14][3]*SK_MY[2] - P[14][17]*SK_MY[1] - P[14][16]*SK_MY[3] + P[14][18]*SK_MY[4]);
|
|
Kfusion[15] = SK_MY[0]*(P[15][20] + P[15][0]*SH_MAG[2] + P[15][1]*SH_MAG[1] + P[15][2]*SH_MAG[0] - P[15][3]*SK_MY[2] - P[15][17]*SK_MY[1] - P[15][16]*SK_MY[3] + P[15][18]*SK_MY[4]);
|
|
} else {
|
|
// zero indexes 13 to 15 = 3*4 bytes
|
|
memset(&Kfusion[13], 0, 12);
|
|
}
|
|
|
|
// zero Kalman gains to inhibit magnetic field state estimation
|
|
if (!inhibitMagStates) {
|
|
Kfusion[16] = SK_MY[0]*(P[16][20] + P[16][0]*SH_MAG[2] + P[16][1]*SH_MAG[1] + P[16][2]*SH_MAG[0] - P[16][3]*SK_MY[2] - P[16][17]*SK_MY[1] - P[16][16]*SK_MY[3] + P[16][18]*SK_MY[4]);
|
|
Kfusion[17] = SK_MY[0]*(P[17][20] + P[17][0]*SH_MAG[2] + P[17][1]*SH_MAG[1] + P[17][2]*SH_MAG[0] - P[17][3]*SK_MY[2] - P[17][17]*SK_MY[1] - P[17][16]*SK_MY[3] + P[17][18]*SK_MY[4]);
|
|
Kfusion[18] = SK_MY[0]*(P[18][20] + P[18][0]*SH_MAG[2] + P[18][1]*SH_MAG[1] + P[18][2]*SH_MAG[0] - P[18][3]*SK_MY[2] - P[18][17]*SK_MY[1] - P[18][16]*SK_MY[3] + P[18][18]*SK_MY[4]);
|
|
Kfusion[19] = SK_MY[0]*(P[19][20] + P[19][0]*SH_MAG[2] + P[19][1]*SH_MAG[1] + P[19][2]*SH_MAG[0] - P[19][3]*SK_MY[2] - P[19][17]*SK_MY[1] - P[19][16]*SK_MY[3] + P[19][18]*SK_MY[4]);
|
|
Kfusion[20] = SK_MY[0]*(P[20][20] + P[20][0]*SH_MAG[2] + P[20][1]*SH_MAG[1] + P[20][2]*SH_MAG[0] - P[20][3]*SK_MY[2] - P[20][17]*SK_MY[1] - P[20][16]*SK_MY[3] + P[20][18]*SK_MY[4]);
|
|
Kfusion[21] = SK_MY[0]*(P[21][20] + P[21][0]*SH_MAG[2] + P[21][1]*SH_MAG[1] + P[21][2]*SH_MAG[0] - P[21][3]*SK_MY[2] - P[21][17]*SK_MY[1] - P[21][16]*SK_MY[3] + P[21][18]*SK_MY[4]);
|
|
} else {
|
|
// zero indexes 16 to 21 = 6*4 bytes
|
|
memset(&Kfusion[16], 0, 24);
|
|
}
|
|
|
|
// zero Kalman gains to inhibit wind state estimation
|
|
if (!inhibitWindStates) {
|
|
Kfusion[22] = SK_MY[0]*(P[22][20] + P[22][0]*SH_MAG[2] + P[22][1]*SH_MAG[1] + P[22][2]*SH_MAG[0] - P[22][3]*SK_MY[2] - P[22][17]*SK_MY[1] - P[22][16]*SK_MY[3] + P[22][18]*SK_MY[4]);
|
|
Kfusion[23] = SK_MY[0]*(P[23][20] + P[23][0]*SH_MAG[2] + P[23][1]*SH_MAG[1] + P[23][2]*SH_MAG[0] - P[23][3]*SK_MY[2] - P[23][17]*SK_MY[1] - P[23][16]*SK_MY[3] + P[23][18]*SK_MY[4]);
|
|
} else {
|
|
// zero indexes 22 to 23 = 2*4 bytes
|
|
memset(&Kfusion[22], 0, 8);
|
|
}
|
|
|
|
// set flags to indicate to other processes that fusion has been performede and is required on the next frame
|
|
// this can be used by other fusion processes to avoid fusing on the same frame as this expensive step
|
|
magFusePerformed = true;
|
|
magFuseRequired = true;
|
|
}
|
|
else if (obsIndex == 2) // we are now fusing the Z measurement
|
|
{
|
|
// calculate observation jacobians
|
|
for (uint8_t i = 0; i<=stateIndexLim; i++) H_MAG[i] = 0.0f;
|
|
H_MAG[0] = SH_MAG[1];
|
|
H_MAG[1] = -SH_MAG[2];
|
|
H_MAG[2] = SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2;
|
|
H_MAG[3] = SH_MAG[0];
|
|
H_MAG[16] = 2.0f*q0*q2 + 2.0f*q1*q3;
|
|
H_MAG[17] = 2.0f*q2*q3 - 2.0f*q0*q1;
|
|
H_MAG[18] = SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6];
|
|
H_MAG[21] = 1.0f;
|
|
|
|
// calculate Kalman gain
|
|
SK_MZ[0] = 1.0f / varInnovMag[2];
|
|
SK_MZ[1] = SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6];
|
|
SK_MZ[2] = SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2;
|
|
SK_MZ[3] = 2.0f*q0*q1 - 2.0f*q2*q3;
|
|
SK_MZ[4] = 2.0f*q0*q2 + 2.0f*q1*q3;
|
|
|
|
Kfusion[0] = SK_MZ[0]*(P[0][21] + P[0][0]*SH_MAG[1] - P[0][1]*SH_MAG[2] + P[0][3]*SH_MAG[0] + P[0][2]*SK_MZ[2] + P[0][18]*SK_MZ[1] + P[0][16]*SK_MZ[4] - P[0][17]*SK_MZ[3]);
|
|
Kfusion[1] = SK_MZ[0]*(P[1][21] + P[1][0]*SH_MAG[1] - P[1][1]*SH_MAG[2] + P[1][3]*SH_MAG[0] + P[1][2]*SK_MZ[2] + P[1][18]*SK_MZ[1] + P[1][16]*SK_MZ[4] - P[1][17]*SK_MZ[3]);
|
|
Kfusion[2] = SK_MZ[0]*(P[2][21] + P[2][0]*SH_MAG[1] - P[2][1]*SH_MAG[2] + P[2][3]*SH_MAG[0] + P[2][2]*SK_MZ[2] + P[2][18]*SK_MZ[1] + P[2][16]*SK_MZ[4] - P[2][17]*SK_MZ[3]);
|
|
Kfusion[3] = SK_MZ[0]*(P[3][21] + P[3][0]*SH_MAG[1] - P[3][1]*SH_MAG[2] + P[3][3]*SH_MAG[0] + P[3][2]*SK_MZ[2] + P[3][18]*SK_MZ[1] + P[3][16]*SK_MZ[4] - P[3][17]*SK_MZ[3]);
|
|
Kfusion[4] = SK_MZ[0]*(P[4][21] + P[4][0]*SH_MAG[1] - P[4][1]*SH_MAG[2] + P[4][3]*SH_MAG[0] + P[4][2]*SK_MZ[2] + P[4][18]*SK_MZ[1] + P[4][16]*SK_MZ[4] - P[4][17]*SK_MZ[3]);
|
|
Kfusion[5] = SK_MZ[0]*(P[5][21] + P[5][0]*SH_MAG[1] - P[5][1]*SH_MAG[2] + P[5][3]*SH_MAG[0] + P[5][2]*SK_MZ[2] + P[5][18]*SK_MZ[1] + P[5][16]*SK_MZ[4] - P[5][17]*SK_MZ[3]);
|
|
Kfusion[6] = SK_MZ[0]*(P[6][21] + P[6][0]*SH_MAG[1] - P[6][1]*SH_MAG[2] + P[6][3]*SH_MAG[0] + P[6][2]*SK_MZ[2] + P[6][18]*SK_MZ[1] + P[6][16]*SK_MZ[4] - P[6][17]*SK_MZ[3]);
|
|
Kfusion[7] = SK_MZ[0]*(P[7][21] + P[7][0]*SH_MAG[1] - P[7][1]*SH_MAG[2] + P[7][3]*SH_MAG[0] + P[7][2]*SK_MZ[2] + P[7][18]*SK_MZ[1] + P[7][16]*SK_MZ[4] - P[7][17]*SK_MZ[3]);
|
|
Kfusion[8] = SK_MZ[0]*(P[8][21] + P[8][0]*SH_MAG[1] - P[8][1]*SH_MAG[2] + P[8][3]*SH_MAG[0] + P[8][2]*SK_MZ[2] + P[8][18]*SK_MZ[1] + P[8][16]*SK_MZ[4] - P[8][17]*SK_MZ[3]);
|
|
Kfusion[9] = SK_MZ[0]*(P[9][21] + P[9][0]*SH_MAG[1] - P[9][1]*SH_MAG[2] + P[9][3]*SH_MAG[0] + P[9][2]*SK_MZ[2] + P[9][18]*SK_MZ[1] + P[9][16]*SK_MZ[4] - P[9][17]*SK_MZ[3]);
|
|
|
|
if (!inhibitDelAngBiasStates) {
|
|
Kfusion[10] = SK_MZ[0]*(P[10][21] + P[10][0]*SH_MAG[1] - P[10][1]*SH_MAG[2] + P[10][3]*SH_MAG[0] + P[10][2]*SK_MZ[2] + P[10][18]*SK_MZ[1] + P[10][16]*SK_MZ[4] - P[10][17]*SK_MZ[3]);
|
|
Kfusion[11] = SK_MZ[0]*(P[11][21] + P[11][0]*SH_MAG[1] - P[11][1]*SH_MAG[2] + P[11][3]*SH_MAG[0] + P[11][2]*SK_MZ[2] + P[11][18]*SK_MZ[1] + P[11][16]*SK_MZ[4] - P[11][17]*SK_MZ[3]);
|
|
Kfusion[12] = SK_MZ[0]*(P[12][21] + P[12][0]*SH_MAG[1] - P[12][1]*SH_MAG[2] + P[12][3]*SH_MAG[0] + P[12][2]*SK_MZ[2] + P[12][18]*SK_MZ[1] + P[12][16]*SK_MZ[4] - P[12][17]*SK_MZ[3]);
|
|
} else {
|
|
// zero indexes 10 to 12 = 3*4 bytes
|
|
memset(&Kfusion[10], 0, 12);
|
|
}
|
|
|
|
if (!inhibitDelVelBiasStates) {
|
|
Kfusion[13] = SK_MZ[0]*(P[13][21] + P[13][0]*SH_MAG[1] - P[13][1]*SH_MAG[2] + P[13][3]*SH_MAG[0] + P[13][2]*SK_MZ[2] + P[13][18]*SK_MZ[1] + P[13][16]*SK_MZ[4] - P[13][17]*SK_MZ[3]);
|
|
Kfusion[14] = SK_MZ[0]*(P[14][21] + P[14][0]*SH_MAG[1] - P[14][1]*SH_MAG[2] + P[14][3]*SH_MAG[0] + P[14][2]*SK_MZ[2] + P[14][18]*SK_MZ[1] + P[14][16]*SK_MZ[4] - P[14][17]*SK_MZ[3]);
|
|
Kfusion[15] = SK_MZ[0]*(P[15][21] + P[15][0]*SH_MAG[1] - P[15][1]*SH_MAG[2] + P[15][3]*SH_MAG[0] + P[15][2]*SK_MZ[2] + P[15][18]*SK_MZ[1] + P[15][16]*SK_MZ[4] - P[15][17]*SK_MZ[3]);
|
|
} else {
|
|
// zero indexes 13 to 15 = 3*4 bytes
|
|
memset(&Kfusion[13], 0, 12);
|
|
}
|
|
|
|
// zero Kalman gains to inhibit magnetic field state estimation
|
|
if (!inhibitMagStates) {
|
|
Kfusion[16] = SK_MZ[0]*(P[16][21] + P[16][0]*SH_MAG[1] - P[16][1]*SH_MAG[2] + P[16][3]*SH_MAG[0] + P[16][2]*SK_MZ[2] + P[16][18]*SK_MZ[1] + P[16][16]*SK_MZ[4] - P[16][17]*SK_MZ[3]);
|
|
Kfusion[17] = SK_MZ[0]*(P[17][21] + P[17][0]*SH_MAG[1] - P[17][1]*SH_MAG[2] + P[17][3]*SH_MAG[0] + P[17][2]*SK_MZ[2] + P[17][18]*SK_MZ[1] + P[17][16]*SK_MZ[4] - P[17][17]*SK_MZ[3]);
|
|
Kfusion[18] = SK_MZ[0]*(P[18][21] + P[18][0]*SH_MAG[1] - P[18][1]*SH_MAG[2] + P[18][3]*SH_MAG[0] + P[18][2]*SK_MZ[2] + P[18][18]*SK_MZ[1] + P[18][16]*SK_MZ[4] - P[18][17]*SK_MZ[3]);
|
|
Kfusion[19] = SK_MZ[0]*(P[19][21] + P[19][0]*SH_MAG[1] - P[19][1]*SH_MAG[2] + P[19][3]*SH_MAG[0] + P[19][2]*SK_MZ[2] + P[19][18]*SK_MZ[1] + P[19][16]*SK_MZ[4] - P[19][17]*SK_MZ[3]);
|
|
Kfusion[20] = SK_MZ[0]*(P[20][21] + P[20][0]*SH_MAG[1] - P[20][1]*SH_MAG[2] + P[20][3]*SH_MAG[0] + P[20][2]*SK_MZ[2] + P[20][18]*SK_MZ[1] + P[20][16]*SK_MZ[4] - P[20][17]*SK_MZ[3]);
|
|
Kfusion[21] = SK_MZ[0]*(P[21][21] + P[21][0]*SH_MAG[1] - P[21][1]*SH_MAG[2] + P[21][3]*SH_MAG[0] + P[21][2]*SK_MZ[2] + P[21][18]*SK_MZ[1] + P[21][16]*SK_MZ[4] - P[21][17]*SK_MZ[3]);
|
|
} else {
|
|
// zero indexes 16 to 21 = 6*4 bytes
|
|
memset(&Kfusion[16], 0, 24);
|
|
}
|
|
|
|
// zero Kalman gains to inhibit wind state estimation
|
|
if (!inhibitWindStates) {
|
|
Kfusion[22] = SK_MZ[0]*(P[22][21] + P[22][0]*SH_MAG[1] - P[22][1]*SH_MAG[2] + P[22][3]*SH_MAG[0] + P[22][2]*SK_MZ[2] + P[22][18]*SK_MZ[1] + P[22][16]*SK_MZ[4] - P[22][17]*SK_MZ[3]);
|
|
Kfusion[23] = SK_MZ[0]*(P[23][21] + P[23][0]*SH_MAG[1] - P[23][1]*SH_MAG[2] + P[23][3]*SH_MAG[0] + P[23][2]*SK_MZ[2] + P[23][18]*SK_MZ[1] + P[23][16]*SK_MZ[4] - P[23][17]*SK_MZ[3]);
|
|
} else {
|
|
// zero indexes 22 to 23 = 2*4 bytes
|
|
memset(&Kfusion[22], 0, 8);
|
|
}
|
|
|
|
// set flags to indicate to other processes that fusion has been performede and is required on the next frame
|
|
// this can be used by other fusion processes to avoid fusing on the same frame as this expensive step
|
|
magFusePerformed = true;
|
|
}
|
|
// correct the covariance P = (I - K*H)*P
|
|
// take advantage of the empty columns in KH to reduce the
|
|
// number of operations
|
|
for (unsigned i = 0; i<=stateIndexLim; i++) {
|
|
for (unsigned j = 0; j<=3; j++) {
|
|
KH[i][j] = Kfusion[i] * H_MAG[j];
|
|
}
|
|
for (unsigned j = 4; j<=15; j++) {
|
|
KH[i][j] = 0.0f;
|
|
}
|
|
for (unsigned j = 16; j<=21; j++) {
|
|
KH[i][j] = Kfusion[i] * H_MAG[j];
|
|
}
|
|
for (unsigned j = 22; j<=23; j++) {
|
|
KH[i][j] = 0.0f;
|
|
}
|
|
}
|
|
for (unsigned j = 0; j<=stateIndexLim; j++) {
|
|
for (unsigned i = 0; i<=stateIndexLim; i++) {
|
|
ftype res = 0;
|
|
res += KH[i][0] * P[0][j];
|
|
res += KH[i][1] * P[1][j];
|
|
res += KH[i][2] * P[2][j];
|
|
res += KH[i][3] * P[3][j];
|
|
res += KH[i][16] * P[16][j];
|
|
res += KH[i][17] * P[17][j];
|
|
res += KH[i][18] * P[18][j];
|
|
res += KH[i][19] * P[19][j];
|
|
res += KH[i][20] * P[20][j];
|
|
res += KH[i][21] * P[21][j];
|
|
KHP[i][j] = res;
|
|
}
|
|
}
|
|
// Check that we are not going to drive any variances negative and skip the update if so
|
|
bool healthyFusion = true;
|
|
for (uint8_t i= 0; i<=stateIndexLim; i++) {
|
|
if (KHP[i][i] > P[i][i]) {
|
|
healthyFusion = false;
|
|
}
|
|
}
|
|
if (healthyFusion) {
|
|
// update the covariance matrix
|
|
for (uint8_t i= 0; i<=stateIndexLim; i++) {
|
|
for (uint8_t j= 0; j<=stateIndexLim; j++) {
|
|
P[i][j] = P[i][j] - KHP[i][j];
|
|
}
|
|
}
|
|
|
|
// force the covariance matrix to be symmetrical and limit the variances to prevent ill-condiioning.
|
|
ForceSymmetry();
|
|
ConstrainVariances();
|
|
|
|
// correct the state vector
|
|
for (uint8_t j= 0; j<=stateIndexLim; j++) {
|
|
statesArray[j] = statesArray[j] - Kfusion[j] * innovMag[obsIndex];
|
|
}
|
|
stateStruct.quat.normalize();
|
|
|
|
} else {
|
|
// record bad axis
|
|
if (obsIndex == 0) {
|
|
faultStatus.bad_xmag = true;
|
|
} else if (obsIndex == 1) {
|
|
faultStatus.bad_ymag = true;
|
|
} else if (obsIndex == 2) {
|
|
faultStatus.bad_zmag = true;
|
|
}
|
|
CovarianceInit();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Fuse magnetic heading measurement using explicit algebraic equations generated with Matlab symbolic toolbox.
|
|
* The script file used to generate these and other equations in this filter can be found here:
|
|
* https://github.com/PX4/ecl/blob/master/matlab/scripts/Inertial%20Nav%20EKF/GenerateNavFilterEquations.m
|
|
* This fusion method only modifies the orientation, does not require use of the magnetic field states and is computationally cheaper.
|
|
* It is suitable for use when the external magnetic field environment is disturbed (eg close to metal structures, on ground).
|
|
* It is not as robust to magnetometer failures.
|
|
* It is not suitable for operation where the horizontal magnetic field strength is weak (within 30 degrees latitude of the the magnetic poles)
|
|
*/
|
|
void NavEKF3_core::fuseEulerYaw()
|
|
{
|
|
float q0 = stateStruct.quat[0];
|
|
float q1 = stateStruct.quat[1];
|
|
float q2 = stateStruct.quat[2];
|
|
float q3 = stateStruct.quat[3];
|
|
|
|
// compass measurement error variance (rad^2)
|
|
const float R_YAW = sq(frontend->_yawNoise);
|
|
|
|
// calculate observation jacobian, predicted yaw and zero yaw body to earth rotation matrix
|
|
// determine if a 321 or 312 Euler sequence is best
|
|
float predicted_yaw;
|
|
float H_YAW[4];
|
|
Matrix3f Tbn_zeroYaw;
|
|
if (fabsf(prevTnb[0][2]) < fabsf(prevTnb[1][2])) {
|
|
// calculate observation jacobian when we are observing the first rotation in a 321 sequence
|
|
float t9 = q0*q3;
|
|
float t10 = q1*q2;
|
|
float t2 = t9+t10;
|
|
float t3 = q0*q0;
|
|
float t4 = q1*q1;
|
|
float t5 = q2*q2;
|
|
float t6 = q3*q3;
|
|
float t7 = t3+t4-t5-t6;
|
|
float t8 = t7*t7;
|
|
if (t8 > 1e-6f) {
|
|
t8 = 1.0f/t8;
|
|
} else {
|
|
return;
|
|
}
|
|
float t11 = t2*t2;
|
|
float t12 = t8*t11*4.0f;
|
|
float t13 = t12+1.0f;
|
|
float t14;
|
|
if (fabsf(t13) > 1e-6f) {
|
|
t14 = 1.0f/t13;
|
|
} else {
|
|
return;
|
|
}
|
|
|
|
H_YAW[0] = t8*t14*(q3*t3-q3*t4+q3*t5+q3*t6+q0*q1*q2*2.0f)*-2.0f;
|
|
H_YAW[1] = t8*t14*(-q2*t3+q2*t4+q2*t5+q2*t6+q0*q1*q3*2.0f)*-2.0f;
|
|
H_YAW[2] = t8*t14*(q1*t3+q1*t4+q1*t5-q1*t6+q0*q2*q3*2.0f)*2.0f;
|
|
H_YAW[3] = t8*t14*(q0*t3+q0*t4-q0*t5+q0*t6+q1*q2*q3*2.0f)*2.0f;
|
|
|
|
// Get the 321 euler angles
|
|
Vector3f euler321;
|
|
stateStruct.quat.to_euler(euler321.x, euler321.y, euler321.z);
|
|
predicted_yaw = euler321.z;
|
|
|
|
// set the yaw to zero and calculate the zero yaw rotation from body to earth frame
|
|
Tbn_zeroYaw.from_euler(euler321.x, euler321.y, 0.0f);
|
|
|
|
} else {
|
|
// calculate observation jacobian when we are observing a rotation in a 312 sequence
|
|
float t9 = q0*q3;
|
|
float t10 = q1*q2;
|
|
float t2 = t9-t10;
|
|
float t3 = q0*q0;
|
|
float t4 = q1*q1;
|
|
float t5 = q2*q2;
|
|
float t6 = q3*q3;
|
|
float t7 = t3-t4+t5-t6;
|
|
float t8 = t7*t7;
|
|
if (t8 > 1e-6f) {
|
|
t8 = 1.0f/t8;
|
|
} else {
|
|
return;
|
|
}
|
|
float t11 = t2*t2;
|
|
float t12 = t8*t11*4.0f;
|
|
float t13 = t12+1.0f;
|
|
float t14;
|
|
if (fabsf(t13) > 1e-6f) {
|
|
t14 = 1.0f/t13;
|
|
} else {
|
|
return;
|
|
}
|
|
|
|
H_YAW[0] = t8*t14*(q3*t3+q3*t4-q3*t5+q3*t6-q0*q1*q2*2.0f)*-2.0f;
|
|
H_YAW[1] = t8*t14*(q2*t3+q2*t4+q2*t5-q2*t6-q0*q1*q3*2.0f)*-2.0f;
|
|
H_YAW[2] = t8*t14*(-q1*t3+q1*t4+q1*t5+q1*t6-q0*q2*q3*2.0f)*2.0f;
|
|
H_YAW[3] = t8*t14*(q0*t3-q0*t4+q0*t5+q0*t6-q1*q2*q3*2.0f)*2.0f;
|
|
|
|
// Get the 321 euler angles
|
|
Vector3f euler312 = stateStruct.quat.to_vector312();
|
|
predicted_yaw = euler312.z;
|
|
|
|
// set the yaw to zero and calculate the zero yaw rotation from body to earth frame
|
|
Tbn_zeroYaw.from_euler312(euler312.x, euler312.y, 0.0f);
|
|
}
|
|
|
|
// rotate measured mag components into earth frame
|
|
Vector3f magMeasNED = Tbn_zeroYaw*magDataDelayed.mag;
|
|
|
|
// Use the difference between the horizontal projection and declination to give the measured yaw
|
|
// If we can't use compass data, set the measurement to the predicted
|
|
// to prevent uncontrolled variance growth whilst on ground without magnetometer
|
|
float measured_yaw;
|
|
if (use_compass() && yawAlignComplete) {
|
|
measured_yaw = wrap_PI(-atan2f(magMeasNED.y, magMeasNED.x) + _ahrs->get_compass()->get_declination());
|
|
} else {
|
|
measured_yaw = predicted_yaw;
|
|
}
|
|
|
|
// Calculate the innovation
|
|
float innovation = wrap_PI(predicted_yaw - measured_yaw);
|
|
|
|
// Copy raw value to output variable used for data logging
|
|
innovYaw = innovation;
|
|
|
|
// Calculate innovation variance and Kalman gains, taking advantage of the fact that only the first 4 elements in H are non zero
|
|
float PH[4];
|
|
float varInnov = R_YAW;
|
|
for (uint8_t rowIndex=0; rowIndex<=3; rowIndex++) {
|
|
PH[rowIndex] = 0.0f;
|
|
for (uint8_t colIndex=0; colIndex<=3; colIndex++) {
|
|
PH[rowIndex] += P[rowIndex][colIndex]*H_YAW[colIndex];
|
|
}
|
|
varInnov += H_YAW[rowIndex]*PH[rowIndex];
|
|
}
|
|
float varInnovInv;
|
|
if (varInnov >= R_YAW) {
|
|
varInnovInv = 1.0f / varInnov;
|
|
// output numerical health status
|
|
faultStatus.bad_yaw = false;
|
|
} else {
|
|
// the calculation is badly conditioned, so we cannot perform fusion on this step
|
|
// we reset the covariance matrix and try again next measurement
|
|
CovarianceInit();
|
|
// output numerical health status
|
|
faultStatus.bad_yaw = true;
|
|
return;
|
|
}
|
|
|
|
// calculate Kalman gain
|
|
for (uint8_t rowIndex=0; rowIndex<=stateIndexLim; rowIndex++) {
|
|
Kfusion[rowIndex] = 0.0f;
|
|
for (uint8_t colIndex=0; colIndex<=3; colIndex++) {
|
|
Kfusion[rowIndex] += P[rowIndex][colIndex]*H_YAW[colIndex];
|
|
}
|
|
Kfusion[rowIndex] *= varInnovInv;
|
|
}
|
|
|
|
// calculate the innovation test ratio
|
|
yawTestRatio = sq(innovation) / (sq(MAX(0.01f * (float)frontend->_yawInnovGate, 1.0f)) * varInnov);
|
|
|
|
// Declare the magnetometer unhealthy if the innovation test fails
|
|
if (yawTestRatio > 1.0f) {
|
|
magHealth = false;
|
|
// On the ground a large innovation could be due to large initial gyro bias or magnetic interference from nearby objects
|
|
// If we are flying, then it is more likely due to a magnetometer fault and we should not fuse the data
|
|
if (inFlight) {
|
|
return;
|
|
}
|
|
} else {
|
|
magHealth = true;
|
|
}
|
|
|
|
// limit the innovation so that initial corrections are not too large
|
|
if (innovation > 0.5f) {
|
|
innovation = 0.5f;
|
|
} else if (innovation < -0.5f) {
|
|
innovation = -0.5f;
|
|
}
|
|
|
|
// correct the covariance using P = P - K*H*P taking advantage of the fact that only the first 3 elements in H are non zero
|
|
// calculate K*H*P
|
|
for (uint8_t row = 0; row <= stateIndexLim; row++) {
|
|
for (uint8_t column = 0; column <= 3; column++) {
|
|
KH[row][column] = Kfusion[row] * H_YAW[column];
|
|
}
|
|
}
|
|
for (uint8_t row = 0; row <= stateIndexLim; row++) {
|
|
for (uint8_t column = 0; column <= stateIndexLim; column++) {
|
|
float tmp = KH[row][0] * P[0][column];
|
|
tmp += KH[row][1] * P[1][column];
|
|
tmp += KH[row][2] * P[2][column];
|
|
tmp += KH[row][3] * P[3][column];
|
|
KHP[row][column] = tmp;
|
|
}
|
|
}
|
|
|
|
// Check that we are not going to drive any variances negative and skip the update if so
|
|
bool healthyFusion = true;
|
|
for (uint8_t i= 0; i<=stateIndexLim; i++) {
|
|
if (KHP[i][i] > P[i][i]) {
|
|
healthyFusion = false;
|
|
}
|
|
}
|
|
if (healthyFusion) {
|
|
// update the covariance matrix
|
|
for (uint8_t i= 0; i<=stateIndexLim; i++) {
|
|
for (uint8_t j= 0; j<=stateIndexLim; j++) {
|
|
P[i][j] = P[i][j] - KHP[i][j];
|
|
}
|
|
}
|
|
|
|
// force the covariance matrix to be symmetrical and limit the variances to prevent ill-condiioning.
|
|
ForceSymmetry();
|
|
ConstrainVariances();
|
|
|
|
// correct the state vector
|
|
for (uint8_t i=0; i<=stateIndexLim; i++) {
|
|
statesArray[i] -= Kfusion[i] * innovation;
|
|
}
|
|
stateStruct.quat.normalize();
|
|
|
|
// record fusion numerical health status
|
|
faultStatus.bad_yaw = false;
|
|
|
|
} else {
|
|
// record fusion numerical health status
|
|
faultStatus.bad_yaw = true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fuse declination angle using explicit algebraic equations generated with Matlab symbolic toolbox.
|
|
* The script file used to generate these and other equations in this filter can be found here:
|
|
* https://github.com/PX4/ecl/blob/master/matlab/scripts/Inertial%20Nav%20EKF/GenerateNavFilterEquations.m
|
|
* This is used to prevent the declination of the EKF earth field states from drifting during operation without GPS
|
|
* or some other absolute position or velocity reference
|
|
*/
|
|
void NavEKF3_core::FuseDeclination(float declErr)
|
|
{
|
|
// declination error variance (rad^2)
|
|
const float R_DECL = sq(declErr);
|
|
|
|
// copy required states to local variables
|
|
float magN = stateStruct.earth_magfield.x;
|
|
float magE = stateStruct.earth_magfield.y;
|
|
|
|
// prevent bad earth field states from causing numerical errors or exceptions
|
|
if (magN < 1e-3f) {
|
|
return;
|
|
}
|
|
|
|
// Calculate observation Jacobian and Kalman gains
|
|
// Calculate intermediate variables
|
|
float t2 = magE*magE;
|
|
float t3 = magN*magN;
|
|
float t4 = t2+t3;
|
|
// if the horizontal magnetic field is too small, this calculation will be badly conditioned
|
|
if (t4 < 1e-4f) {
|
|
return;
|
|
}
|
|
float t5 = P[16][16]*t2;
|
|
float t6 = P[17][17]*t3;
|
|
float t7 = t2*t2;
|
|
float t8 = R_DECL*t7;
|
|
float t9 = t3*t3;
|
|
float t10 = R_DECL*t9;
|
|
float t11 = R_DECL*t2*t3*2.0f;
|
|
float t14 = P[16][17]*magE*magN;
|
|
float t15 = P[17][16]*magE*magN;
|
|
float t12 = t5+t6+t8+t10+t11-t14-t15;
|
|
float t13;
|
|
if (fabsf(t12) > 1e-6f) {
|
|
t13 = 1.0f / t12;
|
|
} else {
|
|
return;
|
|
}
|
|
float t18 = magE*magE;
|
|
float t19 = magN*magN;
|
|
float t20 = t18+t19;
|
|
float t21;
|
|
if (fabsf(t20) > 1e-6f) {
|
|
t21 = 1.0f/t20;
|
|
} else {
|
|
return;
|
|
}
|
|
|
|
// Calculate the observation Jacobian
|
|
// Note only 2 terms are non-zero which can be used in matrix operations for calculation of Kalman gains and covariance update to significantly reduce cost
|
|
float H_DECL[24] = {};
|
|
H_DECL[16] = -magE*t21;
|
|
H_DECL[17] = magN*t21;
|
|
|
|
Kfusion[0] = -t4*t13*(P[0][16]*magE-P[0][17]*magN);
|
|
Kfusion[1] = -t4*t13*(P[1][16]*magE-P[1][17]*magN);
|
|
Kfusion[2] = -t4*t13*(P[2][16]*magE-P[2][17]*magN);
|
|
Kfusion[3] = -t4*t13*(P[3][16]*magE-P[3][17]*magN);
|
|
Kfusion[4] = -t4*t13*(P[4][16]*magE-P[4][17]*magN);
|
|
Kfusion[5] = -t4*t13*(P[5][16]*magE-P[5][17]*magN);
|
|
Kfusion[6] = -t4*t13*(P[6][16]*magE-P[6][17]*magN);
|
|
Kfusion[7] = -t4*t13*(P[7][16]*magE-P[7][17]*magN);
|
|
Kfusion[8] = -t4*t13*(P[8][16]*magE-P[8][17]*magN);
|
|
Kfusion[9] = -t4*t13*(P[9][16]*magE-P[9][17]*magN);
|
|
|
|
if (!inhibitDelAngBiasStates) {
|
|
Kfusion[10] = -t4*t13*(P[10][16]*magE-P[10][17]*magN);
|
|
Kfusion[11] = -t4*t13*(P[11][16]*magE-P[11][17]*magN);
|
|
Kfusion[12] = -t4*t13*(P[12][16]*magE-P[12][17]*magN);
|
|
} else {
|
|
// zero indexes 10 to 12 = 3*4 bytes
|
|
memset(&Kfusion[10], 0, 12);
|
|
}
|
|
|
|
if (!inhibitDelVelBiasStates) {
|
|
Kfusion[13] = -t4*t13*(P[13][16]*magE-P[13][17]*magN);
|
|
Kfusion[14] = -t4*t13*(P[14][16]*magE-P[14][17]*magN);
|
|
Kfusion[15] = -t4*t13*(P[15][16]*magE-P[15][17]*magN);
|
|
} else {
|
|
// zero indexes 13 to 15 = 3*4 bytes
|
|
memset(&Kfusion[13], 0, 12);
|
|
}
|
|
|
|
if (!inhibitMagStates) {
|
|
Kfusion[16] = -t4*t13*(P[16][16]*magE-P[16][17]*magN);
|
|
Kfusion[17] = -t4*t13*(P[17][16]*magE-P[17][17]*magN);
|
|
Kfusion[18] = -t4*t13*(P[18][16]*magE-P[18][17]*magN);
|
|
Kfusion[19] = -t4*t13*(P[19][16]*magE-P[19][17]*magN);
|
|
Kfusion[20] = -t4*t13*(P[20][16]*magE-P[20][17]*magN);
|
|
Kfusion[21] = -t4*t13*(P[21][16]*magE-P[21][17]*magN);
|
|
} else {
|
|
// zero indexes 16 to 21 = 6*4 bytes
|
|
memset(&Kfusion[16], 0, 24);
|
|
}
|
|
|
|
if (!inhibitWindStates) {
|
|
Kfusion[22] = -t4*t13*(P[22][16]*magE-P[22][17]*magN);
|
|
Kfusion[23] = -t4*t13*(P[23][16]*magE-P[23][17]*magN);
|
|
} else {
|
|
// zero indexes 22 to 23 = 2*4 bytes
|
|
memset(&Kfusion[22], 0, 8);
|
|
}
|
|
|
|
// get the magnetic declination
|
|
float magDecAng = use_compass() ? _ahrs->get_compass()->get_declination() : 0;
|
|
|
|
// Calculate the innovation
|
|
float innovation = atan2f(magE , magN) - magDecAng;
|
|
|
|
// limit the innovation to protect against data errors
|
|
if (innovation > 0.5f) {
|
|
innovation = 0.5f;
|
|
} else if (innovation < -0.5f) {
|
|
innovation = -0.5f;
|
|
}
|
|
|
|
// correct the covariance P = (I - K*H)*P
|
|
// take advantage of the empty columns in KH to reduce the
|
|
// number of operations
|
|
for (unsigned i = 0; i<=stateIndexLim; i++) {
|
|
for (unsigned j = 0; j<=15; j++) {
|
|
KH[i][j] = 0.0f;
|
|
}
|
|
KH[i][16] = Kfusion[i] * H_DECL[16];
|
|
KH[i][17] = Kfusion[i] * H_DECL[17];
|
|
for (unsigned j = 18; j<=23; j++) {
|
|
KH[i][j] = 0.0f;
|
|
}
|
|
}
|
|
for (unsigned j = 0; j<=stateIndexLim; j++) {
|
|
for (unsigned i = 0; i<=stateIndexLim; i++) {
|
|
KHP[i][j] = KH[i][16] * P[16][j] + KH[i][17] * P[17][j];
|
|
}
|
|
}
|
|
|
|
// Check that we are not going to drive any variances negative and skip the update if so
|
|
bool healthyFusion = true;
|
|
for (uint8_t i= 0; i<=stateIndexLim; i++) {
|
|
if (KHP[i][i] > P[i][i]) {
|
|
healthyFusion = false;
|
|
}
|
|
}
|
|
|
|
if (healthyFusion) {
|
|
// update the covariance matrix
|
|
for (uint8_t i= 0; i<=stateIndexLim; i++) {
|
|
for (uint8_t j= 0; j<=stateIndexLim; j++) {
|
|
P[i][j] = P[i][j] - KHP[i][j];
|
|
}
|
|
}
|
|
|
|
// force the covariance matrix to be symmetrical and limit the variances to prevent ill-condiioning.
|
|
ForceSymmetry();
|
|
ConstrainVariances();
|
|
|
|
// correct the state vector
|
|
for (uint8_t j= 0; j<=stateIndexLim; j++) {
|
|
statesArray[j] = statesArray[j] - Kfusion[j] * innovation;
|
|
}
|
|
stateStruct.quat.normalize();
|
|
|
|
// record fusion health status
|
|
faultStatus.bad_decl = false;
|
|
} else {
|
|
// record fusion health status
|
|
faultStatus.bad_decl = true;
|
|
}
|
|
}
|
|
|
|
/********************************************************
|
|
* MISC FUNCTIONS *
|
|
********************************************************/
|
|
|
|
// align the NE earth magnetic field states with the published declination
|
|
void NavEKF3_core::alignMagStateDeclination()
|
|
{
|
|
// don't do this if we already have a learned magnetic field
|
|
if (magFieldLearned) {
|
|
return;
|
|
}
|
|
|
|
// get the magnetic declination
|
|
float magDecAng = use_compass() ? _ahrs->get_compass()->get_declination() : 0;
|
|
|
|
// rotate the NE values so that the declination matches the published value
|
|
Vector3f initMagNED = stateStruct.earth_magfield;
|
|
float magLengthNE = norm(initMagNED.x,initMagNED.y);
|
|
stateStruct.earth_magfield.x = magLengthNE * cosf(magDecAng);
|
|
stateStruct.earth_magfield.y = magLengthNE * sinf(magDecAng);
|
|
|
|
if (!inhibitMagStates) {
|
|
// zero the corresponding state covariances if magnetic field state learning is active
|
|
float var_16 = P[16][16];
|
|
float var_17 = P[17][17];
|
|
zeroRows(P,16,17);
|
|
zeroCols(P,16,17);
|
|
P[16][16] = var_16;
|
|
P[17][17] = var_17;
|
|
|
|
// fuse the declination angle to establish covariances and prevent large swings in declination
|
|
// during initial fusion
|
|
FuseDeclination(0.1f);
|
|
|
|
}
|
|
}
|
|
|
|
// record a magnetic field state reset event
|
|
void NavEKF3_core::recordMagReset()
|
|
{
|
|
magStateInitComplete = true;
|
|
if (inFlight) {
|
|
finalInflightMagInit = true;
|
|
}
|
|
// take a snap-shot of the vertical position, quaternion and yaw innovation to use as a reference
|
|
// for post alignment checks
|
|
posDownAtLastMagReset = stateStruct.position.z;
|
|
quatAtLastMagReset = stateStruct.quat;
|
|
yawInnovAtLastMagReset = innovYaw;
|
|
}
|
|
|
|
|
|
#endif // HAL_CPU_CLASS
|