mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-22 00:28:30 -04:00
683 lines
24 KiB
C++
683 lines
24 KiB
C++
#include "AP_Avoidance.h"
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
#include <limits>
|
|
#include <AP_AHRS/AP_AHRS.h>
|
|
#include <GCS_MAVLink/GCS.h>
|
|
|
|
#define AVOIDANCE_DEBUGGING 0
|
|
|
|
#if APM_BUILD_TYPE(APM_BUILD_ArduPlane)
|
|
#define AP_AVOIDANCE_WARN_TIME_DEFAULT 30
|
|
#define AP_AVOIDANCE_FAIL_TIME_DEFAULT 30
|
|
#define AP_AVOIDANCE_WARN_DISTANCE_XY_DEFAULT 1000
|
|
#define AP_AVOIDANCE_WARN_DISTANCE_Z_DEFAULT 300
|
|
#define AP_AVOIDANCE_FAIL_DISTANCE_XY_DEFAULT 300
|
|
#define AP_AVOIDANCE_FAIL_DISTANCE_Z_DEFAULT 100
|
|
#define AP_AVOIDANCE_RECOVERY_DEFAULT AP_AVOIDANCE_RECOVERY_RESUME_IF_AUTO_ELSE_LOITER
|
|
#define AP_AVOIDANCE_FAIL_ACTION_DEFAULT MAV_COLLISION_ACTION_REPORT
|
|
#else // APM_BUILD_TYPE(APM_BUILD_ArduCopter), Rover, Boat
|
|
#define AP_AVOIDANCE_WARN_TIME_DEFAULT 30
|
|
#define AP_AVOIDANCE_FAIL_TIME_DEFAULT 30
|
|
#define AP_AVOIDANCE_WARN_DISTANCE_XY_DEFAULT 300
|
|
#define AP_AVOIDANCE_WARN_DISTANCE_Z_DEFAULT 300
|
|
#define AP_AVOIDANCE_FAIL_DISTANCE_XY_DEFAULT 100
|
|
#define AP_AVOIDANCE_FAIL_DISTANCE_Z_DEFAULT 100
|
|
#define AP_AVOIDANCE_RECOVERY_DEFAULT AP_AVOIDANCE_RECOVERY_RTL
|
|
#define AP_AVOIDANCE_FAIL_ACTION_DEFAULT MAV_COLLISION_ACTION_REPORT
|
|
#endif
|
|
|
|
#if AVOIDANCE_DEBUGGING
|
|
#include <stdio.h>
|
|
#define debug(fmt, args ...) do {::fprintf(stderr,"%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args); } while(0)
|
|
#else
|
|
#define debug(fmt, args ...)
|
|
#endif
|
|
|
|
// table of user settable parameters
|
|
const AP_Param::GroupInfo AP_Avoidance::var_info[] = {
|
|
|
|
// @Param: ENABLE
|
|
// @DisplayName: Enable Avoidance using ADSB
|
|
// @Description: Enable Avoidance using ADSB
|
|
// @Values: 0:Disabled,1:Enabled
|
|
// @User: Advanced
|
|
AP_GROUPINFO_FLAGS("ENABLE", 1, AP_Avoidance, _enabled, 0, AP_PARAM_FLAG_ENABLE),
|
|
|
|
// @Param: F_ACTION
|
|
// @DisplayName: Collision Avoidance Behavior
|
|
// @Description: Specifies aircraft behaviour when a collision is imminent
|
|
// @Values: 0:None,1:Report,2:Climb Or Descend,3:Move Horizontally,4:Move Perpendicularly in 3D,5:RTL,6:Hover
|
|
// @User: Advanced
|
|
AP_GROUPINFO("F_ACTION", 2, AP_Avoidance, _fail_action, AP_AVOIDANCE_FAIL_ACTION_DEFAULT),
|
|
|
|
// @Param: W_ACTION
|
|
// @DisplayName: Collision Avoidance Behavior - Warn
|
|
// @Description: Specifies aircraft behaviour when a collision may occur
|
|
// @Values: 0:None,1:Report
|
|
// @User: Advanced
|
|
AP_GROUPINFO("W_ACTION", 3, AP_Avoidance, _warn_action, MAV_COLLISION_ACTION_REPORT),
|
|
|
|
// @Param: F_RCVRY
|
|
// @DisplayName: Recovery behaviour after a fail event
|
|
// @Description: Determines what the aircraft will do after a fail event is resolved
|
|
// @Values: 0:Remain in AVOID_ADSB,1:Resume previous flight mode,2:RTL,3:Resume if AUTO else Loiter
|
|
// @User: Advanced
|
|
AP_GROUPINFO("F_RCVRY", 4, AP_Avoidance, _fail_recovery, AP_AVOIDANCE_RECOVERY_DEFAULT),
|
|
|
|
// @Param: OBS_MAX
|
|
// @DisplayName: Maximum number of obstacles to track
|
|
// @Description: Maximum number of obstacles to track
|
|
// @User: Advanced
|
|
AP_GROUPINFO("OBS_MAX", 5, AP_Avoidance, _obstacles_max, 20),
|
|
|
|
// @Param: W_TIME
|
|
// @DisplayName: Time Horizon Warn
|
|
// @Description: Aircraft velocity vectors are multiplied by this time to determine closest approach. If this results in an approach closer than W_DIST_XY or W_DIST_Z then W_ACTION is undertaken (assuming F_ACTION is not undertaken)
|
|
// @Units: s
|
|
// @User: Advanced
|
|
AP_GROUPINFO("W_TIME", 6, AP_Avoidance, _warn_time_horizon, AP_AVOIDANCE_WARN_TIME_DEFAULT),
|
|
|
|
// @Param: F_TIME
|
|
// @DisplayName: Time Horizon Fail
|
|
// @Description: Aircraft velocity vectors are multiplied by this time to determine closest approach. If this results in an approach closer than F_DIST_XY or F_DIST_Z then F_ACTION is undertaken
|
|
// @Units: s
|
|
// @User: Advanced
|
|
AP_GROUPINFO("F_TIME", 7, AP_Avoidance, _fail_time_horizon, AP_AVOIDANCE_FAIL_TIME_DEFAULT),
|
|
|
|
// @Param: W_DIST_XY
|
|
// @DisplayName: Distance Warn XY
|
|
// @Description: Closest allowed projected distance before W_ACTION is undertaken
|
|
// @Units: m
|
|
// @User: Advanced
|
|
AP_GROUPINFO("W_DIST_XY", 8, AP_Avoidance, _warn_distance_xy, AP_AVOIDANCE_WARN_DISTANCE_XY_DEFAULT),
|
|
|
|
// @Param: F_DIST_XY
|
|
// @DisplayName: Distance Fail XY
|
|
// @Description: Closest allowed projected distance before F_ACTION is undertaken
|
|
// @Units: m
|
|
// @User: Advanced
|
|
AP_GROUPINFO("F_DIST_XY", 9, AP_Avoidance, _fail_distance_xy, AP_AVOIDANCE_FAIL_DISTANCE_XY_DEFAULT),
|
|
|
|
// @Param: W_DIST_Z
|
|
// @DisplayName: Distance Warn Z
|
|
// @Description: Closest allowed projected distance before BEHAVIOUR_W is undertaken
|
|
// @Units: m
|
|
// @User: Advanced
|
|
AP_GROUPINFO("W_DIST_Z", 10, AP_Avoidance, _warn_distance_z, AP_AVOIDANCE_WARN_DISTANCE_Z_DEFAULT),
|
|
|
|
// @Param: F_DIST_Z
|
|
// @DisplayName: Distance Fail Z
|
|
// @Description: Closest allowed projected distance before BEHAVIOUR_F is undertaken
|
|
// @Units: m
|
|
// @User: Advanced
|
|
AP_GROUPINFO("F_DIST_Z", 11, AP_Avoidance, _fail_distance_z, AP_AVOIDANCE_FAIL_DISTANCE_Z_DEFAULT),
|
|
|
|
// @Param: F_ALT_MIN
|
|
// @DisplayName: ADS-B avoidance minimum altitude
|
|
// @Description: Minimum altitude for ADS-B avoidance. If the vehicle is below this altitude, no avoidance action will take place. Useful to prevent ADS-B avoidance from activating while below the tree line or around structures. Default of 0 is no minimum.
|
|
// @Units: m
|
|
// @User: Advanced
|
|
AP_GROUPINFO("F_ALT_MIN", 12, AP_Avoidance, _fail_altitude_minimum, 0),
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
AP_Avoidance::AP_Avoidance(AP_ADSB &adsb) :
|
|
_adsb(adsb)
|
|
{
|
|
AP_Param::setup_object_defaults(this, var_info);
|
|
if (_singleton != nullptr) {
|
|
AP_HAL::panic("AP_Avoidance must be singleton");
|
|
}
|
|
_singleton = this;
|
|
}
|
|
|
|
/*
|
|
* Initialize variables and allocate memory for array
|
|
*/
|
|
void AP_Avoidance::init(void)
|
|
{
|
|
debug("ADSB initialisation: %d obstacles", _obstacles_max.get());
|
|
if (_obstacles == nullptr) {
|
|
_obstacles = new AP_Avoidance::Obstacle[_obstacles_max];
|
|
|
|
if (_obstacles == nullptr) {
|
|
// dynamic RAM allocation of _obstacles[] failed, disable gracefully
|
|
hal.console->printf("Unable to initialize Avoidance obstacle list\n");
|
|
// disable ourselves to avoid repeated allocation attempts
|
|
_enabled.set(0);
|
|
return;
|
|
}
|
|
_obstacles_allocated = _obstacles_max;
|
|
}
|
|
_obstacle_count = 0;
|
|
_last_state_change_ms = 0;
|
|
_threat_level = MAV_COLLISION_THREAT_LEVEL_NONE;
|
|
_gcs_cleared_messages_first_sent = std::numeric_limits<uint32_t>::max();
|
|
_current_most_serious_threat = -1;
|
|
}
|
|
|
|
/*
|
|
* de-initialize and free up some memory
|
|
*/
|
|
void AP_Avoidance::deinit(void)
|
|
{
|
|
if (_obstacles != nullptr) {
|
|
delete [] _obstacles;
|
|
_obstacles = nullptr;
|
|
_obstacles_allocated = 0;
|
|
handle_recovery(AP_AVOIDANCE_RECOVERY_RTL);
|
|
}
|
|
_obstacle_count = 0;
|
|
}
|
|
|
|
bool AP_Avoidance::check_startup()
|
|
{
|
|
if (!_enabled) {
|
|
if (_obstacles != nullptr) {
|
|
deinit();
|
|
}
|
|
// nothing to do
|
|
return false;
|
|
}
|
|
if (_obstacles == nullptr) {
|
|
init();
|
|
}
|
|
return _obstacles != nullptr;
|
|
}
|
|
|
|
// vel is north/east/down!
|
|
void AP_Avoidance::add_obstacle(const uint32_t obstacle_timestamp_ms,
|
|
const MAV_COLLISION_SRC src,
|
|
const uint32_t src_id,
|
|
const Location &loc,
|
|
const Vector3f &vel_ned)
|
|
{
|
|
if (! check_startup()) {
|
|
return;
|
|
}
|
|
uint32_t oldest_timestamp = std::numeric_limits<uint32_t>::max();
|
|
uint8_t oldest_index = 255; // avoid compiler warning with initialisation
|
|
int16_t index = -1;
|
|
uint8_t i;
|
|
for (i=0; i<_obstacle_count; i++) {
|
|
if (_obstacles[i].src_id == src_id &&
|
|
_obstacles[i].src == src) {
|
|
// pre-existing obstacle found; we will update its information
|
|
index = i;
|
|
break;
|
|
}
|
|
if (_obstacles[i].timestamp_ms < oldest_timestamp) {
|
|
oldest_timestamp = _obstacles[i].timestamp_ms;
|
|
oldest_index = i;
|
|
}
|
|
}
|
|
WITH_SEMAPHORE(_rsem);
|
|
|
|
if (index == -1) {
|
|
// existing obstacle not found. See if we can store it anyway:
|
|
if (i <_obstacles_allocated) {
|
|
// have room to store more vehicles...
|
|
index = _obstacle_count++;
|
|
} else if (oldest_timestamp < obstacle_timestamp_ms) {
|
|
// replace this very old entry with this new data
|
|
index = oldest_index;
|
|
} else {
|
|
// no room for this (old?!) data
|
|
return;
|
|
}
|
|
|
|
_obstacles[index].src = src;
|
|
_obstacles[index].src_id = src_id;
|
|
}
|
|
|
|
_obstacles[index]._location = loc;
|
|
_obstacles[index]._velocity = vel_ned;
|
|
_obstacles[index].timestamp_ms = obstacle_timestamp_ms;
|
|
}
|
|
|
|
void AP_Avoidance::add_obstacle(const uint32_t obstacle_timestamp_ms,
|
|
const MAV_COLLISION_SRC src,
|
|
const uint32_t src_id,
|
|
const Location &loc,
|
|
const float cog,
|
|
const float hspeed,
|
|
const float vspeed)
|
|
{
|
|
Vector3f vel;
|
|
vel[0] = hspeed * cosf(radians(cog));
|
|
vel[1] = hspeed * sinf(radians(cog));
|
|
vel[2] = vspeed;
|
|
// debug("cog=%f hspeed=%f veln=%f vele=%f", cog, hspeed, vel[0], vel[1]);
|
|
return add_obstacle(obstacle_timestamp_ms, src, src_id, loc, vel);
|
|
}
|
|
|
|
uint32_t AP_Avoidance::src_id_for_adsb_vehicle(const AP_ADSB::adsb_vehicle_t &vehicle) const
|
|
{
|
|
// TODO: need to include squawk code and callsign
|
|
return vehicle.info.ICAO_address;
|
|
}
|
|
|
|
void AP_Avoidance::get_adsb_samples()
|
|
{
|
|
AP_ADSB::adsb_vehicle_t vehicle;
|
|
while (_adsb.next_sample(vehicle)) {
|
|
uint32_t src_id = src_id_for_adsb_vehicle(vehicle);
|
|
Location loc = _adsb.get_location(vehicle);
|
|
add_obstacle(vehicle.last_update_ms,
|
|
MAV_COLLISION_SRC_ADSB,
|
|
src_id,
|
|
loc,
|
|
vehicle.info.heading/100.0f,
|
|
vehicle.info.hor_velocity/100.0f,
|
|
-vehicle.info.ver_velocity/1000.0f); // convert mm-up to m-down
|
|
}
|
|
}
|
|
|
|
float closest_approach_xy(const Location &my_loc,
|
|
const Vector3f &my_vel,
|
|
const Location &obstacle_loc,
|
|
const Vector3f &obstacle_vel,
|
|
const uint8_t time_horizon)
|
|
{
|
|
|
|
Vector2f delta_vel_ne = Vector2f(obstacle_vel[0] - my_vel[0], obstacle_vel[1] - my_vel[1]);
|
|
const Vector2f delta_pos_ne = obstacle_loc.get_distance_NE(my_loc);
|
|
|
|
Vector2f line_segment_ne = delta_vel_ne * time_horizon;
|
|
|
|
float ret = Vector2<float>::closest_distance_between_radial_and_point
|
|
(line_segment_ne,
|
|
delta_pos_ne);
|
|
|
|
debug(" time_horizon: (%d)", time_horizon);
|
|
debug(" delta pos: (y=%f,x=%f)", delta_pos_ne[0], delta_pos_ne[1]);
|
|
debug(" delta vel: (y=%f,x=%f)", delta_vel_ne[0], delta_vel_ne[1]);
|
|
debug(" line segment: (y=%f,x=%f)", line_segment_ne[0], line_segment_ne[1]);
|
|
debug(" closest: (%f)", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
// returns the closest these objects will get in the body z axis (in metres)
|
|
float closest_approach_z(const Location &my_loc,
|
|
const Vector3f &my_vel,
|
|
const Location &obstacle_loc,
|
|
const Vector3f &obstacle_vel,
|
|
const uint8_t time_horizon)
|
|
{
|
|
|
|
float delta_vel_d = obstacle_vel[2] - my_vel[2];
|
|
float delta_pos_d = obstacle_loc.alt - my_loc.alt;
|
|
|
|
float ret;
|
|
if (delta_pos_d >= 0 && delta_vel_d >= 0) {
|
|
ret = delta_pos_d;
|
|
} else if (delta_pos_d <= 0 && delta_vel_d <= 0) {
|
|
ret = fabsf(delta_pos_d);
|
|
} else {
|
|
ret = fabsf(delta_pos_d - delta_vel_d * time_horizon);
|
|
}
|
|
|
|
debug(" time_horizon: (%d)", time_horizon);
|
|
debug(" delta pos: (%f) metres", delta_pos_d/100.0f);
|
|
debug(" delta vel: (%f) m/s", delta_vel_d);
|
|
debug(" closest: (%f) metres", ret/100.0f);
|
|
|
|
return ret/100.0f;
|
|
}
|
|
|
|
void AP_Avoidance::update_threat_level(const Location &my_loc,
|
|
const Vector3f &my_vel,
|
|
AP_Avoidance::Obstacle &obstacle)
|
|
{
|
|
|
|
Location &obstacle_loc = obstacle._location;
|
|
Vector3f &obstacle_vel = obstacle._velocity;
|
|
|
|
obstacle.threat_level = MAV_COLLISION_THREAT_LEVEL_NONE;
|
|
|
|
const uint32_t obstacle_age = AP_HAL::millis() - obstacle.timestamp_ms;
|
|
float closest_xy = closest_approach_xy(my_loc, my_vel, obstacle_loc, obstacle_vel, _fail_time_horizon + obstacle_age/1000);
|
|
if (closest_xy < _fail_distance_xy) {
|
|
obstacle.threat_level = MAV_COLLISION_THREAT_LEVEL_HIGH;
|
|
} else {
|
|
closest_xy = closest_approach_xy(my_loc, my_vel, obstacle_loc, obstacle_vel, _warn_time_horizon + obstacle_age/1000);
|
|
if (closest_xy < _warn_distance_xy) {
|
|
obstacle.threat_level = MAV_COLLISION_THREAT_LEVEL_LOW;
|
|
}
|
|
}
|
|
|
|
// check for vertical separation; our threat level is the minimum
|
|
// of vertical and horizontal threat levels
|
|
float closest_z = closest_approach_z(my_loc, my_vel, obstacle_loc, obstacle_vel, _warn_time_horizon + obstacle_age/1000);
|
|
if (obstacle.threat_level != MAV_COLLISION_THREAT_LEVEL_NONE) {
|
|
if (closest_z > _warn_distance_z) {
|
|
obstacle.threat_level = MAV_COLLISION_THREAT_LEVEL_NONE;
|
|
} else {
|
|
closest_z = closest_approach_z(my_loc, my_vel, obstacle_loc, obstacle_vel, _fail_time_horizon + obstacle_age/1000);
|
|
if (closest_z > _fail_distance_z) {
|
|
obstacle.threat_level = MAV_COLLISION_THREAT_LEVEL_LOW;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we haven't heard from a vehicle then assume it is no threat
|
|
if (obstacle_age > MAX_OBSTACLE_AGE_MS) {
|
|
obstacle.threat_level = MAV_COLLISION_THREAT_LEVEL_NONE;
|
|
}
|
|
|
|
// could optimise this to not calculate a lot of this if threat
|
|
// level is none - but only *once the GCS has been informed*!
|
|
obstacle.closest_approach_xy = closest_xy;
|
|
obstacle.closest_approach_z = closest_z;
|
|
float current_distance = my_loc.get_distance(obstacle_loc);
|
|
obstacle.distance_to_closest_approach = current_distance - closest_xy;
|
|
Vector2f net_velocity_ne = Vector2f(my_vel[0] - obstacle_vel[0], my_vel[1] - obstacle_vel[1]);
|
|
obstacle.time_to_closest_approach = 0.0f;
|
|
if (!is_zero(obstacle.distance_to_closest_approach) &&
|
|
! is_zero(net_velocity_ne.length())) {
|
|
obstacle.time_to_closest_approach = obstacle.distance_to_closest_approach / net_velocity_ne.length();
|
|
}
|
|
}
|
|
|
|
MAV_COLLISION_THREAT_LEVEL AP_Avoidance::current_threat_level() const {
|
|
if (_obstacles == nullptr) {
|
|
return MAV_COLLISION_THREAT_LEVEL_NONE;
|
|
}
|
|
if (_current_most_serious_threat == -1) {
|
|
return MAV_COLLISION_THREAT_LEVEL_NONE;
|
|
}
|
|
return _obstacles[_current_most_serious_threat].threat_level;
|
|
}
|
|
|
|
void AP_Avoidance::send_collision_all(const AP_Avoidance::Obstacle &threat, MAV_COLLISION_ACTION behaviour) const
|
|
{
|
|
const mavlink_collision_t packet{
|
|
id: threat.src_id,
|
|
time_to_minimum_delta: threat.time_to_closest_approach,
|
|
altitude_minimum_delta: threat.closest_approach_z,
|
|
horizontal_minimum_delta: threat.closest_approach_xy,
|
|
src: MAV_COLLISION_SRC_ADSB,
|
|
action: (uint8_t)behaviour,
|
|
threat_level: (uint8_t)threat.threat_level,
|
|
};
|
|
gcs().send_to_active_channels(MAVLINK_MSG_ID_COLLISION, (const char *)&packet);
|
|
}
|
|
|
|
void AP_Avoidance::handle_threat_gcs_notify(AP_Avoidance::Obstacle *threat)
|
|
{
|
|
if (threat == nullptr) {
|
|
return;
|
|
}
|
|
|
|
uint32_t now = AP_HAL::millis();
|
|
if (threat->threat_level == MAV_COLLISION_THREAT_LEVEL_NONE) {
|
|
// only send cleared messages for a few seconds:
|
|
if (_gcs_cleared_messages_first_sent == 0) {
|
|
_gcs_cleared_messages_first_sent = now;
|
|
}
|
|
if (now - _gcs_cleared_messages_first_sent > _gcs_cleared_messages_duration * 1000) {
|
|
return;
|
|
}
|
|
} else {
|
|
_gcs_cleared_messages_first_sent = 0;
|
|
}
|
|
if (now - threat->last_gcs_report_time > _gcs_notify_interval * 1000) {
|
|
send_collision_all(*threat, mav_avoidance_action());
|
|
threat->last_gcs_report_time = now;
|
|
}
|
|
|
|
}
|
|
|
|
bool AP_Avoidance::obstacle_is_more_serious_threat(const AP_Avoidance::Obstacle &obstacle) const
|
|
{
|
|
if (_current_most_serious_threat == -1) {
|
|
// any threat is more of a threat than no threat
|
|
return true;
|
|
}
|
|
const AP_Avoidance::Obstacle ¤t = _obstacles[_current_most_serious_threat];
|
|
if (obstacle.threat_level > current.threat_level) {
|
|
// threat_level is updated by update_threat_level
|
|
return true;
|
|
}
|
|
if (obstacle.threat_level == current.threat_level &&
|
|
obstacle.time_to_closest_approach < current.time_to_closest_approach) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void AP_Avoidance::check_for_threats()
|
|
{
|
|
const AP_AHRS &_ahrs = AP::ahrs();
|
|
|
|
Location my_loc;
|
|
if (!_ahrs.get_position(my_loc)) {
|
|
// if we don't know our own location we can't determine any threat level
|
|
return;
|
|
}
|
|
|
|
Vector3f my_vel;
|
|
if (!_ahrs.get_velocity_NED(my_vel)) {
|
|
// assuming our own velocity to be zero here may cause us to
|
|
// fly into something. Better not to attempt to avoid in this
|
|
// case.
|
|
return;
|
|
}
|
|
|
|
// we always check all obstacles to see if they are threats since it
|
|
// is most likely our own position and/or velocity have changed
|
|
// determine the current most-serious-threat
|
|
_current_most_serious_threat = -1;
|
|
for (uint8_t i=0; i<_obstacle_count; i++) {
|
|
|
|
AP_Avoidance::Obstacle &obstacle = _obstacles[i];
|
|
const uint32_t obstacle_age = AP_HAL::millis() - obstacle.timestamp_ms;
|
|
debug("i=%d src_id=%d timestamp=%u age=%d", i, obstacle.src_id, obstacle.timestamp_ms, obstacle_age);
|
|
|
|
update_threat_level(my_loc, my_vel, obstacle);
|
|
debug(" threat-level=%d", obstacle.threat_level);
|
|
|
|
// ignore any really old data:
|
|
if (obstacle_age > MAX_OBSTACLE_AGE_MS) {
|
|
// shrink list if this is the last entry:
|
|
if (i == _obstacle_count-1) {
|
|
_obstacle_count -= 1;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (obstacle_is_more_serious_threat(obstacle)) {
|
|
_current_most_serious_threat = i;
|
|
}
|
|
}
|
|
if (_current_most_serious_threat != -1) {
|
|
debug("Current most serious threat: %d level=%d", _current_most_serious_threat, _obstacles[_current_most_serious_threat].threat_level);
|
|
}
|
|
}
|
|
|
|
|
|
AP_Avoidance::Obstacle *AP_Avoidance::most_serious_threat()
|
|
{
|
|
if (_current_most_serious_threat < 0) {
|
|
// we *really_ should not have been called!
|
|
return nullptr;
|
|
}
|
|
return &_obstacles[_current_most_serious_threat];
|
|
}
|
|
|
|
|
|
void AP_Avoidance::update()
|
|
{
|
|
if (!check_startup()) {
|
|
return;
|
|
}
|
|
|
|
if (_adsb.enabled()) {
|
|
get_adsb_samples();
|
|
}
|
|
|
|
check_for_threats();
|
|
|
|
// avoid object (if necessary)
|
|
handle_avoidance_local(most_serious_threat());
|
|
|
|
// notify GCS of most serious thread
|
|
handle_threat_gcs_notify(most_serious_threat());
|
|
}
|
|
|
|
void AP_Avoidance::handle_avoidance_local(AP_Avoidance::Obstacle *threat)
|
|
{
|
|
MAV_COLLISION_THREAT_LEVEL new_threat_level = MAV_COLLISION_THREAT_LEVEL_NONE;
|
|
MAV_COLLISION_ACTION action = MAV_COLLISION_ACTION_NONE;
|
|
|
|
if (threat != nullptr) {
|
|
new_threat_level = threat->threat_level;
|
|
if (new_threat_level == MAV_COLLISION_THREAT_LEVEL_HIGH) {
|
|
action = (MAV_COLLISION_ACTION)_fail_action.get();
|
|
Location my_loc;
|
|
if (action != MAV_COLLISION_ACTION_NONE && _fail_altitude_minimum > 0 &&
|
|
AP::ahrs().get_position(my_loc) && ((my_loc.alt*0.01f) < _fail_altitude_minimum)) {
|
|
// disable avoidance when close to ground, report only
|
|
action = MAV_COLLISION_ACTION_REPORT;
|
|
}
|
|
}
|
|
}
|
|
|
|
uint32_t now = AP_HAL::millis();
|
|
|
|
if (new_threat_level != _threat_level) {
|
|
// transition to higher states immediately, recovery to lower states more slowly
|
|
if (((now - _last_state_change_ms) > AP_AVOIDANCE_STATE_RECOVERY_TIME_MS) || (new_threat_level > _threat_level)) {
|
|
// handle recovery from high threat level
|
|
if (_threat_level == MAV_COLLISION_THREAT_LEVEL_HIGH) {
|
|
handle_recovery(_fail_recovery);
|
|
_latest_action = MAV_COLLISION_ACTION_NONE;
|
|
}
|
|
|
|
// update state
|
|
_last_state_change_ms = now;
|
|
_threat_level = new_threat_level;
|
|
}
|
|
}
|
|
|
|
// handle ongoing threat by calling vehicle specific handler
|
|
if ((threat != nullptr) && (_threat_level == MAV_COLLISION_THREAT_LEVEL_HIGH) && (action > MAV_COLLISION_ACTION_REPORT)) {
|
|
_latest_action = handle_avoidance(threat, action);
|
|
}
|
|
}
|
|
|
|
|
|
void AP_Avoidance::handle_msg(const mavlink_message_t &msg)
|
|
{
|
|
if (!check_startup()) {
|
|
// avoidance is not active / allocated
|
|
return;
|
|
}
|
|
|
|
if (msg.msgid != MAVLINK_MSG_ID_GLOBAL_POSITION_INT) {
|
|
// we only take position from GLOBAL_POSITION_INT
|
|
return;
|
|
}
|
|
|
|
if (msg.sysid == mavlink_system.sysid) {
|
|
// we do not obstruct ourselves....
|
|
return;
|
|
}
|
|
|
|
// inform AP_Avoidance we have a new player
|
|
mavlink_global_position_int_t packet;
|
|
mavlink_msg_global_position_int_decode(&msg, &packet);
|
|
Location loc;
|
|
loc.lat = packet.lat;
|
|
loc.lng = packet.lon;
|
|
loc.alt = packet.alt / 10; // mm -> cm
|
|
loc.relative_alt = false;
|
|
Vector3f vel = Vector3f(packet.vx/100.0f, // cm to m
|
|
packet.vy/100.0f,
|
|
packet.vz/100.0f);
|
|
add_obstacle(AP_HAL::millis(),
|
|
MAV_COLLISION_SRC_MAVLINK_GPS_GLOBAL_INT,
|
|
msg.sysid,
|
|
loc,
|
|
vel);
|
|
}
|
|
|
|
// get unit vector away from the nearest obstacle
|
|
bool AP_Avoidance::get_vector_perpendicular(const AP_Avoidance::Obstacle *obstacle, Vector3f &vec_neu)
|
|
{
|
|
if (obstacle == nullptr) {
|
|
// why where we called?!
|
|
return false;
|
|
}
|
|
|
|
Location my_abs_pos;
|
|
if (!AP::ahrs().get_position(my_abs_pos)) {
|
|
// we should not get to here! If we don't know our position
|
|
// we can't know if there are any threats, for starters!
|
|
return false;
|
|
}
|
|
|
|
// if their velocity is moving around close to zero then flying
|
|
// perpendicular to that velocity may mean we do weird things.
|
|
// Instead, we will fly directly away from them
|
|
if (obstacle->_velocity.length() < _low_velocity_threshold) {
|
|
const Vector2f delta_pos_xy = obstacle->_location.get_distance_NE(my_abs_pos);
|
|
const float delta_pos_z = my_abs_pos.alt - obstacle->_location.alt;
|
|
Vector3f delta_pos_xyz = Vector3f(delta_pos_xy.x, delta_pos_xy.y, delta_pos_z);
|
|
// avoid div by zero
|
|
if (delta_pos_xyz.is_zero()) {
|
|
return false;
|
|
}
|
|
delta_pos_xyz.normalize();
|
|
vec_neu = delta_pos_xyz;
|
|
return true;
|
|
} else {
|
|
vec_neu = perpendicular_xyz(obstacle->_location, obstacle->_velocity, my_abs_pos);
|
|
// avoid div by zero
|
|
if (vec_neu.is_zero()) {
|
|
return false;
|
|
}
|
|
vec_neu.normalize();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// helper functions to calculate 3D destination to get us away from obstacle
|
|
// v1 is NED
|
|
Vector3f AP_Avoidance::perpendicular_xyz(const Location &p1, const Vector3f &v1, const Location &p2)
|
|
{
|
|
const Vector2f delta_p_2d = p1.get_distance_NE(p2);
|
|
Vector3f delta_p_xyz = Vector3f(delta_p_2d[0],delta_p_2d[1],(p2.alt-p1.alt)/100.0f); //check this line
|
|
Vector3f v1_xyz = Vector3f(v1[0], v1[1], -v1[2]);
|
|
Vector3f ret = Vector3f::perpendicular(delta_p_xyz, v1_xyz);
|
|
return ret;
|
|
}
|
|
|
|
// helper functions to calculate horizontal destination to get us away from obstacle
|
|
// v1 is NED
|
|
Vector2f AP_Avoidance::perpendicular_xy(const Location &p1, const Vector3f &v1, const Location &p2)
|
|
{
|
|
const Vector2f delta_p = p1.get_distance_NE(p2);
|
|
Vector2f delta_p_n = Vector2f(delta_p[0],delta_p[1]);
|
|
Vector2f v1n(v1[0],v1[1]);
|
|
Vector2f ret_xy = Vector2f::perpendicular(delta_p_n, v1n);
|
|
return ret_xy;
|
|
}
|
|
|
|
|
|
// singleton instance
|
|
AP_Avoidance *AP_Avoidance::_singleton;
|
|
|
|
namespace AP {
|
|
|
|
AP_Avoidance *ap_avoidance()
|
|
{
|
|
return AP_Avoidance::get_singleton();
|
|
}
|
|
|
|
}
|