mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-07 00:18:29 -04:00
ab6b84e876
Signed-off-by: Patrick José Pereira <patrickelectric@gmail.com>
164 lines
5.3 KiB
C++
164 lines
5.3 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/*
|
|
Submarine simulator class
|
|
*/
|
|
|
|
#include "SIM_Submarine.h"
|
|
#include <AP_Motors/AP_Motors.h>
|
|
#include "Frame_Vectored.h"
|
|
|
|
#include <stdio.h>
|
|
|
|
using namespace SITL;
|
|
|
|
static Thruster vectored_thrusters[] =
|
|
{
|
|
Thruster(0, MOT_1_ROLL_FACTOR, MOT_1_PITCH_FACTOR, MOT_1_YAW_FACTOR, MOT_1_THROTTLE_FACTOR, MOT_1_FORWARD_FACTOR, MOT_1_STRAFE_FACTOR),
|
|
Thruster(1, MOT_2_ROLL_FACTOR, MOT_2_PITCH_FACTOR, MOT_2_YAW_FACTOR, MOT_2_THROTTLE_FACTOR, MOT_2_FORWARD_FACTOR, MOT_2_STRAFE_FACTOR),
|
|
Thruster(2, MOT_3_ROLL_FACTOR, MOT_3_PITCH_FACTOR, MOT_3_YAW_FACTOR, MOT_3_THROTTLE_FACTOR, MOT_3_FORWARD_FACTOR, MOT_3_STRAFE_FACTOR),
|
|
Thruster(3, MOT_4_ROLL_FACTOR, MOT_4_PITCH_FACTOR, MOT_4_YAW_FACTOR, MOT_4_THROTTLE_FACTOR, MOT_4_FORWARD_FACTOR, MOT_4_STRAFE_FACTOR),
|
|
Thruster(4, MOT_5_ROLL_FACTOR, MOT_5_PITCH_FACTOR, MOT_5_YAW_FACTOR, MOT_5_THROTTLE_FACTOR, MOT_5_FORWARD_FACTOR, MOT_5_STRAFE_FACTOR),
|
|
Thruster(5, MOT_6_ROLL_FACTOR, MOT_6_PITCH_FACTOR, MOT_6_YAW_FACTOR, MOT_6_THROTTLE_FACTOR, MOT_6_FORWARD_FACTOR, MOT_6_STRAFE_FACTOR)
|
|
|
|
};
|
|
|
|
Submarine::Submarine(const char *home_str, const char *frame_str) :
|
|
Aircraft(home_str, frame_str),
|
|
frame(NULL)
|
|
{
|
|
frame_height = 0.0;
|
|
ground_behavior = GROUND_BEHAVIOR_NONE;
|
|
}
|
|
|
|
// calculate rotational and linear accelerations
|
|
void Submarine::calculate_forces(const struct sitl_input &input, Vector3f &rot_accel, Vector3f &body_accel)
|
|
{
|
|
rot_accel = Vector3f(0,0,0);
|
|
|
|
// slight positive buoyancy
|
|
body_accel = Vector3f(0, 0, -calculate_buoyancy_acceleration());
|
|
|
|
for (int i = 0; i < 6; i++) {
|
|
Thruster t = vectored_thrusters[i];
|
|
int16_t pwm = input.servos[t.servo];
|
|
float output = 0;
|
|
if (pwm < 2000 && pwm > 1000) {
|
|
output = (pwm - 1500) / 400.0; // range -1~1
|
|
}
|
|
|
|
// 2.5 scalar for approximate real-life performance of T200 thruster
|
|
body_accel += t.linear * output * 2.5;
|
|
|
|
rot_accel += t.rotational * output;
|
|
}
|
|
|
|
// Limit movement at the sea floor
|
|
if (position.z > 100 && body_accel.z > -GRAVITY_MSS) {
|
|
body_accel.z = -GRAVITY_MSS;
|
|
}
|
|
|
|
// Calculate linear drag forces
|
|
Vector3f linear_drag_forces;
|
|
calculate_drag_force(velocity_air_bf, frame_property.linear_drag_coefficient, linear_drag_forces);
|
|
// Add forces in body frame accel
|
|
body_accel -= linear_drag_forces / frame_property.weight;
|
|
|
|
// Calculate angular drag forces
|
|
Vector3f angular_drag_forces;
|
|
calculate_drag_force(gyro, frame_property.angular_drag_coefficient, angular_drag_forces);
|
|
// Add forces in body frame accel
|
|
rot_accel -= angular_drag_forces / frame_property.weight;
|
|
}
|
|
|
|
/**
|
|
* @brief Calculate drag force against body
|
|
*
|
|
* @param velocity Body frame velocity of fluid
|
|
* @param drag_coefficient Drag coefficient of body
|
|
* @param force Output forces
|
|
* $ F_D = rho * v^2 * A * C_D / 2 $
|
|
* rho = water density (kg/m^3), V = velocity (m/s), A = area (m^2), C_D = drag_coefficient
|
|
*/
|
|
void Submarine::calculate_drag_force(const Vector3f &velocity, const Vector3f &drag_coefficient, Vector3f &force)
|
|
{
|
|
/**
|
|
* @brief It's necessary to keep the velocity orientation from the body frame.
|
|
* To do so, a mathematical artifice is used to do velocity square but without loosing the direction.
|
|
* $(|V|/V)*V^2$ = $|V|*V$
|
|
*/
|
|
const Vector3f velocity_2(
|
|
fabsf(velocity.x) * velocity.x,
|
|
fabsf(velocity.y) * velocity.y,
|
|
fabsf(velocity.z) * velocity.z
|
|
);
|
|
|
|
force = (velocity_2 * water_density) * frame_property.equivalent_sphere_area / 2.0f;
|
|
force *= drag_coefficient;
|
|
}
|
|
|
|
/**
|
|
* @brief Calculate buoyancy force of the frame
|
|
*
|
|
* @return float
|
|
*/
|
|
float Submarine::calculate_buoyancy_acceleration()
|
|
{
|
|
float below_water_level = position.z - frame_property.height/2;
|
|
|
|
// Completely above water level
|
|
if (below_water_level < 0) {
|
|
return 0.0f;
|
|
}
|
|
|
|
// Completely below water level
|
|
if (below_water_level > frame_property.height/2) {
|
|
return frame_property.buoyancy_acceleration;
|
|
}
|
|
|
|
// bouyant force is proportional to fraction of height in water
|
|
return frame_property.buoyancy_acceleration * below_water_level/frame_property.height;
|
|
};
|
|
|
|
/*
|
|
update the Submarine simulation by one time step
|
|
*/
|
|
void Submarine::update(const struct sitl_input &input)
|
|
{
|
|
// get wind vector setup
|
|
update_wind(input);
|
|
|
|
Vector3f rot_accel;
|
|
|
|
calculate_forces(input, rot_accel, accel_body);
|
|
|
|
update_dynamics(rot_accel);
|
|
|
|
// update lat/lon/altitude
|
|
update_position();
|
|
time_advance();
|
|
|
|
// update magnetic field
|
|
update_mag_field_bf();
|
|
}
|
|
|
|
/*
|
|
return true if we are on the ground
|
|
*/
|
|
bool Submarine::on_ground() const
|
|
{
|
|
return false;
|
|
}
|