mirror of https://github.com/ArduPilot/ardupilot
280 lines
9.6 KiB
C#
280 lines
9.6 KiB
C#
using System;
|
||
using System.Collections.Generic;
|
||
using System.Linq;
|
||
using System.Text;
|
||
|
||
namespace ArdupilotMega.HIL
|
||
{
|
||
public class Utils
|
||
{
|
||
public const double rad2deg = (180 / System.Math.PI);
|
||
public const double deg2rad = (1.0 / rad2deg);
|
||
public const double ft2m = (1.0 / 3.2808399);
|
||
public const double kts2fps = 1.68780986;
|
||
|
||
public static double sin(double val)
|
||
{
|
||
return System.Math.Sin(val);
|
||
}
|
||
public static double cos(double val)
|
||
{
|
||
return System.Math.Cos(val);
|
||
}
|
||
public static double acos(double val)
|
||
{
|
||
return System.Math.Acos(val);
|
||
}
|
||
public static double asin(double val)
|
||
{
|
||
return System.Math.Asin(val);
|
||
}
|
||
public static double atan2(double val, double val2)
|
||
{
|
||
return System.Math.Atan2(val, val2);
|
||
}
|
||
public static double radians(double val)
|
||
{
|
||
return val * deg2rad;
|
||
}
|
||
public static double degrees(double val)
|
||
{
|
||
return val * rad2deg;
|
||
}
|
||
public static double sqrt(double val)
|
||
{
|
||
return System.Math.Sqrt(val);
|
||
}
|
||
|
||
public static int[] range(int no)
|
||
{
|
||
int[] range = new int[no];
|
||
for (int a = 0; a < no; a++)
|
||
{
|
||
range[a] = a;
|
||
}
|
||
return range;
|
||
}
|
||
|
||
public static double fabs(double val)
|
||
{
|
||
return System.Math.Abs(val);
|
||
}
|
||
|
||
public static double tan(double val)
|
||
{
|
||
return System.Math.Tan(val);
|
||
}
|
||
|
||
public static int len(object[] data)
|
||
{
|
||
return data.Length;
|
||
}
|
||
|
||
|
||
public static Tuple<double, double, double> EarthRatesToBodyRates(double roll, double pitch, double yaw,
|
||
double rollRate, double pitchRate, double yawRate)
|
||
{
|
||
//convert the angular velocities from earth frame to
|
||
//body frame. Thanks to James Goppert for the formula
|
||
|
||
//all inputs and outputs are in degrees
|
||
|
||
//returns a tuple, (p,q,r)
|
||
|
||
|
||
var phi = radians(roll);
|
||
var theta = radians(pitch);
|
||
var phiDot = radians(rollRate);
|
||
var thetaDot = radians(pitchRate);
|
||
var psiDot = radians(yawRate);
|
||
|
||
var p = phiDot - psiDot * sin(theta);
|
||
var q = cos(phi) * thetaDot + sin(phi) * psiDot * cos(theta);
|
||
var r = cos(phi) * psiDot * cos(theta) - sin(phi) * thetaDot;
|
||
|
||
return new Tuple<double, double, double>(degrees(p), degrees(q), degrees(r));
|
||
}
|
||
|
||
public static Tuple<double, double, double> EarthRatesToBodyRatesRyan(double roll, double pitch, double yaw,
|
||
double x, double y, double z)
|
||
{
|
||
// thanks to ryan beall
|
||
|
||
var phi = radians(roll);
|
||
var theta = radians(pitch);
|
||
var psi = radians((360 - yaw) * 1.0);
|
||
var Po = radians(x);
|
||
var Qo = radians(y);
|
||
var Ro = radians(-z);
|
||
|
||
var P = Po * cos(psi) * cos(theta) - Ro * sin(theta) + Qo * cos(theta) * sin(psi);
|
||
|
||
var Q = Qo * (cos(phi) * cos(psi) + sin(phi) * sin(psi) * sin(theta)) - Po * (cos(phi) * sin(psi) - cos(psi) * sin(phi) * sin(theta)) + Ro * cos(theta) * sin(phi);
|
||
|
||
var R = Po * (sin(phi) * sin(psi) + cos(phi) * cos(psi) * sin(theta)) - Qo * (cos(psi) * sin(phi) - cos(phi) * sin(psi) * sin(theta)) + Ro * cos(phi) * cos(theta);
|
||
|
||
|
||
// P = 0;
|
||
//Q = 0;
|
||
//R = 0;
|
||
|
||
|
||
return new Tuple<double, double, double>(degrees(P), degrees(Q), degrees(R));
|
||
}
|
||
|
||
public static Tuple<double, double, double> EarthRatesToBodyRatesMine(double roll, double pitch, double yaw,
|
||
double rollRate, double pitchRate, double yawRate)
|
||
{
|
||
// thanks to ryan beall
|
||
|
||
var phi = radians(roll);
|
||
var theta = radians(pitch);
|
||
var psi = radians(yaw);
|
||
var Po = radians(pitchRate);
|
||
var Ro = radians(yawRate);
|
||
var Qo = radians(rollRate);
|
||
|
||
var Q = Po * cos(psi) + Qo * sin(psi);
|
||
|
||
var P = Po * sin(psi) + Qo * cos(psi); ;
|
||
|
||
var R = Ro;
|
||
|
||
return new Tuple<double, double, double>(degrees(P), degrees(Q), degrees(R));
|
||
|
||
|
||
/*
|
||
double Cr, Cp, Cz;
|
||
double Sr, Sp, Sz;
|
||
|
||
var phi = radians(roll);
|
||
var theta = radians(pitch);
|
||
var psi = radians(yaw);
|
||
var Po = radians(rollRate);
|
||
var Ro = radians(pitchRate);
|
||
var Qo = radians(yawRate);
|
||
|
||
Cr = Math.Cos((phi));
|
||
Cp = Math.Cos((theta));
|
||
Cz = Math.Cos((psi));
|
||
Sr = Math.Sin((phi));
|
||
Sp = Math.Sin((theta));
|
||
Sz = Math.Sin((psi));
|
||
|
||
// http://planning.cs.uiuc.edu/node102.html
|
||
// Z Y X
|
||
// roll -Sp, CpSr, CpCr
|
||
// pitch SzCp, SzSpSr+CzCr, SzSpCr-CpCr
|
||
// yaw CzCp, CzSpSr-SzCr, CzSpCr+SzSr
|
||
|
||
var P = -(Qo * Sp) + Po * Cp * Sr + Ro * Cp * Cr;
|
||
|
||
var Q = Qo * (Sz * Cp) + Po * (Sz * Sp * Sr + Cz * Cr) + Ro * (Sz * Sp * Cr - Cp * Cr);
|
||
|
||
var R = Qo * (Cz * Cp) + Po * (Cz * Sp * Sr - Sz * Cr) + Ro * (Cz * Sp * Cr + Sz * Sr);
|
||
|
||
return new Tuple<double, double, double>(degrees(P), degrees(Q), degrees(R));
|
||
* */
|
||
}
|
||
|
||
public static Tuple<double, double, double> OGLtoBCBF(double phi, double theta, double psi, double x, double y, double z)
|
||
{
|
||
double x_NED, y_NED, z_NED;
|
||
double Cr, Cp, Cy;
|
||
double Sr, Sp, Sy;
|
||
|
||
//Accelerations in X-Plane are expressed in the local OpenGL reference frame, for whatever reason.
|
||
//This coordinate system is defined as follows (taken from the X-Plane SDK Wiki):
|
||
|
||
// The origin 0,0,0 is on the surface of the earth at sea level at some "reference point".
|
||
// The +X axis points east from the reference point.
|
||
// The +Z axis points south from the reference point.
|
||
// The +Y axis points straight up away from the center of the earth at the reference point.
|
||
|
||
// First we shall convert from this East Up South frame, to a more conventional NED (North East Down) frame.
|
||
x_NED = (x) * -1.0;
|
||
y_NED = (y) * 1.0;
|
||
z_NED = (z) * -1.0;
|
||
|
||
// Next calculate cos & sin of angles for use in the transformation matrix.
|
||
// r, p & y subscripts stand for roll pitch and yaw.
|
||
|
||
Cr = Math.Cos((phi));
|
||
Cp = Math.Cos((theta));
|
||
Cy = Math.Cos((psi));
|
||
Sr = Math.Sin((phi));
|
||
Sp = Math.Sin((theta));
|
||
Sy = Math.Sin((psi));
|
||
|
||
// Next we need to rotate our accelerations from the NED reference frame, into the body fixed reference frame
|
||
|
||
// THANKS TO GEORGE M SIOURIS WHOSE "MISSILE GUIDANCE AND CONTROL SYSTEMS" BOOK SEEMS TO BE THE ONLY EASY TO FIND REFERENCE THAT
|
||
// ACTUALLY GETS THE NED TO BODY FRAME ROTATION MATRIX CORRECT!!
|
||
|
||
// CpCy, CpSy, -Sp | local_ax
|
||
// SrSpCy-CrSy, SrSpSy+CrCy, SrCp | local_ay
|
||
// CrSpCy+SrSy, CrSpSy-SrCy, CrCp | local_az
|
||
|
||
x = (x_NED * Cp * Cy) + (y_NED * Cp * Sy) - (z_NED * Sp);
|
||
y = (x_NED * ((Sr * Sp * Cy) - (Cr * Sy))) + (y_NED * ((Sr * Sp * Sy) + (Cr * Cy))) + (z_NED * Sr * Cp);
|
||
z = (x_NED * ((Cr * Sp * Cy) + (Sr * Sy))) + (y_NED * ((Cr * Sp * Sy) - (Sr * Cy))) + (z_NED * Cr * Cp);
|
||
|
||
return new Tuple<double, double, double>((x), (y), (z));
|
||
}
|
||
|
||
|
||
/// <summary>
|
||
/// From http://code.google.com/p/gentlenav/source/browse/trunk/Tools/XP_UDB_HILSIM/utility.cpp
|
||
/// Converts from xplanes to fixed body ref
|
||
/// </summary>
|
||
/// <param name="x"></param>
|
||
/// <param name="y"></param>
|
||
/// <param name="z"></param>
|
||
/// <param name="alpha"></param>
|
||
/// <param name="beta"></param>
|
||
public static void FLIGHTtoBCBF(ref float x, ref float y, ref float z, float alpha, float beta)
|
||
{
|
||
float Ca = (float)Math.Cos(alpha);
|
||
float Cb = (float)Math.Cos(beta);
|
||
float Sa = (float)Math.Sin(alpha);
|
||
float Sb = (float)Math.Sin(beta);
|
||
|
||
float X_plane = (x * Ca * Cb) - (z * Sa * Cb) - (y * Sb);
|
||
float Y_plane = (z * Sa * Sb) - (x * Ca * Sb) - (y * Cb);
|
||
float Z_plane = (x * Sa) + (z * Ca);
|
||
|
||
x = X_plane;
|
||
y = Y_plane;
|
||
z = Z_plane;
|
||
}
|
||
|
||
public static Vector3 BodyRatesToEarthRates(Matrix3 dcm, Vector3 gyro)
|
||
{
|
||
//'''convert the angular velocities from body frame to
|
||
//earth frame.
|
||
|
||
//all inputs and outputs are in radians/s
|
||
|
||
//returns a earth rate vector
|
||
//'''
|
||
|
||
var p = gyro.x;
|
||
var q = gyro.y;
|
||
var r = gyro.z;
|
||
|
||
double phi = 0;
|
||
double theta = 0;
|
||
double psi = 0;
|
||
|
||
dcm.to_euler(ref phi, ref theta, ref psi);
|
||
|
||
var phiDot = p + tan(theta) * (q * sin(phi) + r * cos(phi));
|
||
var thetaDot = q * cos(phi) - r * sin(phi);
|
||
if (fabs(cos(theta)) < 1.0e-20)
|
||
theta += 1.0e-10;
|
||
var psiDot = (q * sin(phi) + r * cos(phi)) / cos(theta);
|
||
|
||
return new Vector3((phiDot), (thetaDot), (psiDot));
|
||
}
|
||
}
|
||
} |