mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-25 18:18:49 -04:00
f6d7d1bc59
this fixes a problem with the HDNG2RLL PID, which was using the wrong time base and prevents similar bugs from happening in the future
435 lines
16 KiB
Plaintext
435 lines
16 KiB
Plaintext
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
//****************************************************************
|
|
// Function that controls aileron/rudder, elevator, rudder (if 4 channel control) and throttle to produce desired attitude and airspeed.
|
|
//****************************************************************
|
|
|
|
static void stabilize()
|
|
{
|
|
float ch1_inf = 1.0;
|
|
float ch2_inf = 1.0;
|
|
float ch4_inf = 1.0;
|
|
float speed_scaler;
|
|
|
|
if (g.airspeed_enabled == true && g.airspeed_use == true){
|
|
if(airspeed > 0)
|
|
speed_scaler = (STANDARD_SPEED * 100) / airspeed;
|
|
else
|
|
speed_scaler = 2.0;
|
|
speed_scaler = constrain(speed_scaler, 0.5, 2.0);
|
|
} else {
|
|
if (g.channel_throttle.servo_out > 0){
|
|
speed_scaler = 0.5 + ((float)THROTTLE_CRUISE / g.channel_throttle.servo_out / 2.0); // First order taylor expansion of square root
|
|
// Should maybe be to the 2/7 power, but we aren't goint to implement that...
|
|
}else{
|
|
speed_scaler = 1.67;
|
|
}
|
|
speed_scaler = constrain(speed_scaler, 0.6, 1.67); // This case is constrained tighter as we don't have real speed info
|
|
}
|
|
|
|
if(crash_timer > 0){
|
|
nav_roll = 0;
|
|
}
|
|
|
|
if (inverted_flight) {
|
|
// we want to fly upside down. We need to cope with wrap of
|
|
// the roll_sensor interfering with wrap of nav_roll, which
|
|
// would really confuse the PID code. The easiest way to
|
|
// handle this is to ensure both go in the same direction from
|
|
// zero
|
|
nav_roll += 18000;
|
|
if (ahrs.roll_sensor < 0) nav_roll -= 36000;
|
|
}
|
|
|
|
// For Testing Only
|
|
// roll_sensor = (radio_in[CH_RUDDER] - radio_trim[CH_RUDDER]) * 10;
|
|
// Serial.printf_P(PSTR(" roll_sensor "));
|
|
// Serial.print(roll_sensor,DEC);
|
|
|
|
// Calculate dersired servo output for the roll
|
|
// ---------------------------------------------
|
|
g.channel_roll.servo_out = g.pidServoRoll.get_pid((nav_roll - ahrs.roll_sensor), speed_scaler);
|
|
long tempcalc = nav_pitch +
|
|
fabs(ahrs.roll_sensor * g.kff_pitch_compensation) +
|
|
(g.channel_throttle.servo_out * g.kff_throttle_to_pitch) -
|
|
(ahrs.pitch_sensor - g.pitch_trim);
|
|
if (inverted_flight) {
|
|
// when flying upside down the elevator control is inverted
|
|
tempcalc = -tempcalc;
|
|
}
|
|
g.channel_pitch.servo_out = g.pidServoPitch.get_pid(tempcalc, speed_scaler);
|
|
|
|
// Mix Stick input to allow users to override control surfaces
|
|
// -----------------------------------------------------------
|
|
if ((control_mode < FLY_BY_WIRE_A) ||
|
|
(ENABLE_STICK_MIXING == 1 &&
|
|
geofence_stickmixing() &&
|
|
control_mode > FLY_BY_WIRE_B &&
|
|
failsafe == FAILSAFE_NONE)) {
|
|
|
|
// TODO: use RC_Channel control_mix function?
|
|
ch1_inf = (float)g.channel_roll.radio_in - (float)g.channel_roll.radio_trim;
|
|
ch1_inf = fabs(ch1_inf);
|
|
ch1_inf = min(ch1_inf, 400.0);
|
|
ch1_inf = ((400.0 - ch1_inf) /400.0);
|
|
|
|
ch2_inf = (float)g.channel_pitch.radio_in - g.channel_pitch.radio_trim;
|
|
ch2_inf = fabs(ch2_inf);
|
|
ch2_inf = min(ch2_inf, 400.0);
|
|
ch2_inf = ((400.0 - ch2_inf) /400.0);
|
|
|
|
// scale the sensor input based on the stick input
|
|
// -----------------------------------------------
|
|
g.channel_roll.servo_out *= ch1_inf;
|
|
g.channel_pitch.servo_out *= ch2_inf;
|
|
|
|
// Mix in stick inputs
|
|
// -------------------
|
|
g.channel_roll.servo_out += g.channel_roll.pwm_to_angle();
|
|
g.channel_pitch.servo_out += g.channel_pitch.pwm_to_angle();
|
|
|
|
//Serial.printf_P(PSTR(" servo_out[CH_ROLL] "));
|
|
//Serial.println(servo_out[CH_ROLL],DEC);
|
|
}
|
|
|
|
// stick mixing performed for rudder for all cases including FBW unless disabled for higher modes
|
|
// important for steering on the ground during landing
|
|
// -----------------------------------------------
|
|
if (control_mode <= FLY_BY_WIRE_B ||
|
|
(ENABLE_STICK_MIXING == 1 &&
|
|
geofence_stickmixing() &&
|
|
failsafe == FAILSAFE_NONE)) {
|
|
ch4_inf = (float)g.channel_rudder.radio_in - (float)g.channel_rudder.radio_trim;
|
|
ch4_inf = fabs(ch4_inf);
|
|
ch4_inf = min(ch4_inf, 400.0);
|
|
ch4_inf = ((400.0 - ch4_inf) /400.0);
|
|
}
|
|
|
|
// Apply output to Rudder
|
|
// ----------------------
|
|
calc_nav_yaw(speed_scaler);
|
|
g.channel_rudder.servo_out *= ch4_inf;
|
|
g.channel_rudder.servo_out += g.channel_rudder.pwm_to_angle();
|
|
|
|
// Call slew rate limiter if used
|
|
// ------------------------------
|
|
//#if(ROLL_SLEW_LIMIT != 0)
|
|
// g.channel_roll.servo_out = roll_slew_limit(g.channel_roll.servo_out);
|
|
//#endif
|
|
}
|
|
|
|
static void crash_checker()
|
|
{
|
|
if(ahrs.pitch_sensor < -4500){
|
|
crash_timer = 255;
|
|
}
|
|
if(crash_timer > 0)
|
|
crash_timer--;
|
|
}
|
|
|
|
|
|
static void calc_throttle()
|
|
{
|
|
if (g.airspeed_enabled == false || g.airspeed_use == false) {
|
|
int throttle_target = g.throttle_cruise + throttle_nudge;
|
|
|
|
// TODO: think up an elegant way to bump throttle when
|
|
// groundspeed_undershoot > 0 in the no airspeed sensor case; PID
|
|
// control?
|
|
|
|
|
|
// no airspeed sensor, we use nav pitch to determine the proper throttle output
|
|
// AUTO, RTL, etc
|
|
// ---------------------------------------------------------------------------
|
|
if (nav_pitch >= 0) {
|
|
g.channel_throttle.servo_out = throttle_target + (g.throttle_max - throttle_target) * nav_pitch / g.pitch_limit_max;
|
|
} else {
|
|
g.channel_throttle.servo_out = throttle_target - (throttle_target - g.throttle_min) * nav_pitch / g.pitch_limit_min;
|
|
}
|
|
|
|
g.channel_throttle.servo_out = constrain(g.channel_throttle.servo_out, g.throttle_min.get(), g.throttle_max.get());
|
|
} else {
|
|
// throttle control with airspeed compensation
|
|
// -------------------------------------------
|
|
energy_error = airspeed_energy_error + (float)altitude_error * 0.098f;
|
|
|
|
// positive energy errors make the throttle go higher
|
|
g.channel_throttle.servo_out = g.throttle_cruise + g.pidTeThrottle.get_pid(energy_error);
|
|
g.channel_throttle.servo_out += (g.channel_pitch.servo_out * g.kff_pitch_to_throttle);
|
|
|
|
g.channel_throttle.servo_out = constrain(g.channel_throttle.servo_out,
|
|
g.throttle_min.get(), g.throttle_max.get()); // TODO - resolve why "saved" is used here versus "current"
|
|
}
|
|
|
|
}
|
|
|
|
/*****************************************
|
|
* Calculate desired roll/pitch/yaw angles (in medium freq loop)
|
|
*****************************************/
|
|
|
|
// Yaw is separated into a function for future implementation of heading hold on rolling take-off
|
|
// ----------------------------------------------------------------------------------------
|
|
static void calc_nav_yaw(float speed_scaler)
|
|
{
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE
|
|
Vector3f temp = imu.get_accel();
|
|
long error = (long)(-temp.y*100.0);
|
|
|
|
// Control is a feedforward from the aileron control + a PID to coordinate the turn (drive y axis accel to zero)
|
|
g.channel_rudder.servo_out = g.kff_rudder_mix * g.channel_roll.servo_out + g.pidServoRudder.get_pid(error, speed_scaler);
|
|
#else
|
|
g.channel_rudder.servo_out = g.kff_rudder_mix * g.channel_roll.servo_out;
|
|
// XXX probably need something here based on heading
|
|
#endif
|
|
}
|
|
|
|
|
|
static void calc_nav_pitch()
|
|
{
|
|
// Calculate the Pitch of the plane
|
|
// --------------------------------
|
|
if (g.airspeed_enabled == true && g.airspeed_use == true) {
|
|
nav_pitch = -g.pidNavPitchAirspeed.get_pid(airspeed_error);
|
|
} else {
|
|
nav_pitch = g.pidNavPitchAltitude.get_pid(altitude_error);
|
|
}
|
|
nav_pitch = constrain(nav_pitch, g.pitch_limit_min.get(), g.pitch_limit_max.get());
|
|
}
|
|
|
|
|
|
#define YAW_DAMPENER 0
|
|
|
|
static void calc_nav_roll()
|
|
{
|
|
|
|
// Adjust gain based on ground speed - We need lower nav gain going in to a headwind, etc.
|
|
// This does not make provisions for wind speed in excess of airframe speed
|
|
nav_gain_scaler = (float)g_gps->ground_speed / (STANDARD_SPEED * 100.0);
|
|
nav_gain_scaler = constrain(nav_gain_scaler, 0.2, 1.4);
|
|
|
|
// negative error = left turn
|
|
// positive error = right turn
|
|
// Calculate the required roll of the plane
|
|
// ----------------------------------------
|
|
nav_roll = g.pidNavRoll.get_pid(bearing_error, nav_gain_scaler); //returns desired bank angle in degrees*100
|
|
nav_roll = constrain(nav_roll, -g.roll_limit.get(), g.roll_limit.get());
|
|
|
|
Vector3f omega;
|
|
omega = ahrs.get_gyro();
|
|
|
|
// rate limiter
|
|
long rate = degrees(omega.z) * 100; // 3rad = 17188 , 6rad = 34377
|
|
rate = constrain(rate, -6000, 6000); // limit input
|
|
int dampener = rate * YAW_DAMPENER; // 34377 * .175 = 6000
|
|
|
|
// add in yaw dampener
|
|
nav_roll -= dampener;
|
|
nav_roll = constrain(nav_roll, -g.roll_limit.get(), g.roll_limit.get());
|
|
}
|
|
|
|
|
|
/*****************************************
|
|
* Roll servo slew limit
|
|
*****************************************/
|
|
/*
|
|
float roll_slew_limit(float servo)
|
|
{
|
|
static float last;
|
|
float temp = constrain(servo, last-ROLL_SLEW_LIMIT * delta_ms_fast_loop/1000.f, last + ROLL_SLEW_LIMIT * delta_ms_fast_loop/1000.f);
|
|
last = servo;
|
|
return temp;
|
|
}*/
|
|
|
|
/*****************************************
|
|
* Throttle slew limit
|
|
*****************************************/
|
|
static void throttle_slew_limit()
|
|
{
|
|
static int last = 1000;
|
|
if(g.throttle_slewrate) { // if slew limit rate is set to zero then do not slew limit
|
|
|
|
float temp = g.throttle_slewrate * G_Dt * 10.f; // * 10 to scale % to pwm range of 1000 to 2000
|
|
g.channel_throttle.radio_out = constrain(g.channel_throttle.radio_out, last - (int)temp, last + (int)temp);
|
|
last = g.channel_throttle.radio_out;
|
|
}
|
|
}
|
|
|
|
|
|
// Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc.
|
|
// Keeps outdated data out of our calculations
|
|
static void reset_I(void)
|
|
{
|
|
g.pidNavRoll.reset_I();
|
|
g.pidNavPitchAirspeed.reset_I();
|
|
g.pidNavPitchAltitude.reset_I();
|
|
g.pidTeThrottle.reset_I();
|
|
// g.pidAltitudeThrottle.reset_I();
|
|
}
|
|
|
|
/*****************************************
|
|
* Set the flight control servos based on the current calculated values
|
|
*****************************************/
|
|
static void set_servos(void)
|
|
{
|
|
int flapSpeedSource = 0;
|
|
|
|
// vectorize the rc channels
|
|
RC_Channel_aux* rc_array[NUM_CHANNELS];
|
|
rc_array[CH_1] = NULL;
|
|
rc_array[CH_2] = NULL;
|
|
rc_array[CH_3] = NULL;
|
|
rc_array[CH_4] = NULL;
|
|
rc_array[CH_5] = &g.rc_5;
|
|
rc_array[CH_6] = &g.rc_6;
|
|
rc_array[CH_7] = &g.rc_7;
|
|
rc_array[CH_8] = &g.rc_8;
|
|
|
|
if(control_mode == MANUAL){
|
|
// do a direct pass through of radio values
|
|
if (g.mix_mode == 0){
|
|
g.channel_roll.radio_out = g.channel_roll.radio_in;
|
|
g.channel_pitch.radio_out = g.channel_pitch.radio_in;
|
|
} else {
|
|
g.channel_roll.radio_out = APM_RC.InputCh(CH_ROLL);
|
|
g.channel_pitch.radio_out = APM_RC.InputCh(CH_PITCH);
|
|
}
|
|
g.channel_throttle.radio_out = g.channel_throttle.radio_in;
|
|
g.channel_rudder.radio_out = g.channel_rudder.radio_in;
|
|
// FIXME To me it does not make sense to control the aileron using radio_in in manual mode
|
|
// Doug could you please take a look at this ?
|
|
if (g_rc_function[RC_Channel_aux::k_aileron]) {
|
|
if (g_rc_function[RC_Channel_aux::k_aileron] != rc_array[g.flight_mode_channel-1]) {
|
|
g_rc_function[RC_Channel_aux::k_aileron]->radio_out = g_rc_function[RC_Channel_aux::k_aileron]->radio_in;
|
|
}
|
|
}
|
|
// only use radio_in if the channel is not used as flight_mode_channel
|
|
if (g_rc_function[RC_Channel_aux::k_flap_auto]) {
|
|
if (g_rc_function[RC_Channel_aux::k_flap_auto] != rc_array[g.flight_mode_channel-1]) {
|
|
g_rc_function[RC_Channel_aux::k_flap_auto]->radio_out = g_rc_function[RC_Channel_aux::k_flap_auto]->radio_in;
|
|
} else {
|
|
g_rc_function[RC_Channel_aux::k_flap_auto]->radio_out = g_rc_function[RC_Channel_aux::k_flap_auto]->radio_trim;
|
|
}
|
|
}
|
|
} else {
|
|
if (g.mix_mode == 0) {
|
|
g.channel_roll.calc_pwm();
|
|
g.channel_pitch.calc_pwm();
|
|
if (g_rc_function[RC_Channel_aux::k_aileron]) {
|
|
g_rc_function[RC_Channel_aux::k_aileron]->servo_out = g.channel_roll.servo_out;
|
|
g_rc_function[RC_Channel_aux::k_aileron]->calc_pwm();
|
|
}
|
|
|
|
}else{
|
|
/*Elevon mode*/
|
|
float ch1;
|
|
float ch2;
|
|
ch1 = g.channel_pitch.servo_out - (BOOL_TO_SIGN(g.reverse_elevons) * g.channel_roll.servo_out);
|
|
ch2 = g.channel_pitch.servo_out + (BOOL_TO_SIGN(g.reverse_elevons) * g.channel_roll.servo_out);
|
|
g.channel_roll.radio_out = elevon1_trim + (BOOL_TO_SIGN(g.reverse_ch1_elevon) * (ch1 * 500.0/ SERVO_MAX));
|
|
g.channel_pitch.radio_out = elevon2_trim + (BOOL_TO_SIGN(g.reverse_ch2_elevon) * (ch2 * 500.0/ SERVO_MAX));
|
|
}
|
|
g.channel_rudder.calc_pwm();
|
|
|
|
#if THROTTLE_OUT == 0
|
|
g.channel_throttle.servo_out = 0;
|
|
#else
|
|
// convert 0 to 100% into PWM
|
|
g.channel_throttle.servo_out = constrain(g.channel_throttle.servo_out, g.throttle_min.get(), g.throttle_max.get());
|
|
|
|
// We want to supress the throttle if we think we are on the ground and in an autopilot controlled throttle mode.
|
|
/* Disable throttle if following conditions are met:
|
|
1 - We are in Circle mode (which we use for short term failsafe), or in FBW-B or higher
|
|
AND
|
|
2 - Our reported altitude is within 10 meters of the home altitude.
|
|
3 - Our reported speed is under 5 meters per second.
|
|
4 - We are not performing a takeoff in Auto mode
|
|
OR
|
|
5 - Home location is not set
|
|
*/
|
|
if (
|
|
(control_mode == CIRCLE || control_mode >= FLY_BY_WIRE_B) &&
|
|
(abs(home.alt - current_loc.alt) < 1000) &&
|
|
(((g.airspeed_enabled && g.airspeed_use) ? airspeed : g_gps->ground_speed) < 500 ) &&
|
|
!(control_mode==AUTO && takeoff_complete == false)
|
|
) {
|
|
g.channel_throttle.servo_out = 0;
|
|
g.channel_throttle.calc_pwm();
|
|
}
|
|
|
|
#endif
|
|
|
|
g.channel_throttle.calc_pwm();
|
|
|
|
/* TO DO - fix this for RC_Channel library
|
|
#if THROTTLE_REVERSE == 1
|
|
radio_out[CH_THROTTLE] = radio_max(CH_THROTTLE) + radio_min(CH_THROTTLE) - radio_out[CH_THROTTLE];
|
|
#endif
|
|
*/
|
|
|
|
if (control_mode >= FLY_BY_WIRE_B) {
|
|
/* only do throttle slew limiting in modes where throttle
|
|
control is automatic */
|
|
throttle_slew_limit();
|
|
}
|
|
}
|
|
|
|
// Auto flap deployment
|
|
if (g_rc_function[RC_Channel_aux::k_flap_auto] != NULL) {
|
|
if(control_mode < FLY_BY_WIRE_B) {
|
|
// only use radio_in if the channel is not used as flight_mode_channel
|
|
if (g_rc_function[RC_Channel_aux::k_flap_auto] != rc_array[g.flight_mode_channel-1]) {
|
|
g_rc_function[RC_Channel_aux::k_flap_auto]->radio_out = g_rc_function[RC_Channel_aux::k_flap_auto]->radio_in;
|
|
} else {
|
|
g_rc_function[RC_Channel_aux::k_flap_auto]->radio_out = g_rc_function[RC_Channel_aux::k_flap_auto]->radio_trim;
|
|
}
|
|
} else if (control_mode >= FLY_BY_WIRE_B) {
|
|
// FIXME: use target_airspeed in both FBW_B and g.airspeed_enabled cases - Doug?
|
|
if (control_mode == FLY_BY_WIRE_B) {
|
|
flapSpeedSource = ((float)target_airspeed)/100;
|
|
} else if (g.airspeed_enabled == true && g.airspeed_use == true) {
|
|
flapSpeedSource = g.airspeed_cruise/100;
|
|
} else {
|
|
flapSpeedSource = g.throttle_cruise;
|
|
}
|
|
if ( flapSpeedSource > g.flap_1_speed) {
|
|
g_rc_function[RC_Channel_aux::k_flap_auto]->servo_out = 0;
|
|
} else if (flapSpeedSource > g.flap_2_speed) {
|
|
g_rc_function[RC_Channel_aux::k_flap_auto]->servo_out = g.flap_1_percent;
|
|
} else {
|
|
g_rc_function[RC_Channel_aux::k_flap_auto]->servo_out = g.flap_2_percent;
|
|
}
|
|
g_rc_function[RC_Channel_aux::k_flap_auto]->calc_pwm();
|
|
}
|
|
}
|
|
|
|
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS
|
|
// send values to the PWM timers for output
|
|
// ----------------------------------------
|
|
APM_RC.OutputCh(CH_1, g.channel_roll.radio_out); // send to Servos
|
|
APM_RC.OutputCh(CH_2, g.channel_pitch.radio_out); // send to Servos
|
|
APM_RC.OutputCh(CH_3, g.channel_throttle.radio_out); // send to Servos
|
|
APM_RC.OutputCh(CH_4, g.channel_rudder.radio_out); // send to Servos
|
|
// Route configurable aux. functions to their respective servos
|
|
g.rc_5.output_ch(CH_5);
|
|
g.rc_6.output_ch(CH_6);
|
|
g.rc_7.output_ch(CH_7);
|
|
g.rc_8.output_ch(CH_8);
|
|
#endif
|
|
}
|
|
|
|
static void demo_servos(byte i) {
|
|
|
|
while(i > 0){
|
|
gcs_send_text_P(SEVERITY_LOW,PSTR("Demo Servos!"));
|
|
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS
|
|
APM_RC.OutputCh(1, 1400);
|
|
mavlink_delay(400);
|
|
APM_RC.OutputCh(1, 1600);
|
|
mavlink_delay(200);
|
|
APM_RC.OutputCh(1, 1500);
|
|
#endif
|
|
mavlink_delay(400);
|
|
i--;
|
|
}
|
|
}
|