ardupilot/libraries/AP_RangeFinder/RangeFinder.h
2017-06-08 01:22:07 +01:00

211 lines
7.9 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <AP_Common/AP_Common.h>
#include <AP_HAL/AP_HAL.h>
#include <AP_Param/AP_Param.h>
#include <AP_Math/AP_Math.h>
#include <AP_SerialManager/AP_SerialManager.h>
// Maximum number of range finder instances available on this platform
#define RANGEFINDER_MAX_INSTANCES 2
#define RANGEFINDER_GROUND_CLEARANCE_CM_DEFAULT 10
#define RANGEFINDER_PREARM_ALT_MAX_CM 200
#define RANGEFINDER_PREARM_REQUIRED_CHANGE_CM 50
class AP_RangeFinder_Backend;
class RangeFinder
{
public:
friend class AP_RangeFinder_Backend;
RangeFinder(AP_SerialManager &_serial_manager, enum Rotation orientation_default);
// RangeFinder driver types
enum RangeFinder_Type {
RangeFinder_TYPE_NONE = 0,
RangeFinder_TYPE_ANALOG = 1,
RangeFinder_TYPE_MBI2C = 2,
RangeFinder_TYPE_PLI2C = 3,
RangeFinder_TYPE_PX4 = 4,
RangeFinder_TYPE_PX4_PWM= 5,
RangeFinder_TYPE_BBB_PRU= 6,
RangeFinder_TYPE_LWI2C = 7,
RangeFinder_TYPE_LWSER = 8,
RangeFinder_TYPE_BEBOP = 9,
RangeFinder_TYPE_MAVLink = 10,
RangeFinder_TYPE_ULANDING= 11,
RangeFinder_TYPE_LEDDARONE = 12,
RangeFinder_TYPE_MBSER = 13,
RangeFinder_TYPE_TRONE = 14,
RangeFinder_TYPE_PLI2CV3= 15,
RangeFinder_TYPE_VL53L0X = 16
};
enum RangeFinder_Function {
FUNCTION_LINEAR = 0,
FUNCTION_INVERTED = 1,
FUNCTION_HYPERBOLA = 2
};
enum RangeFinder_Status {
RangeFinder_NotConnected = 0,
RangeFinder_NoData,
RangeFinder_OutOfRangeLow,
RangeFinder_OutOfRangeHigh,
RangeFinder_Good
};
// The RangeFinder_State structure is filled in by the backend driver
struct RangeFinder_State {
uint8_t instance; // the instance number of this RangeFinder
uint16_t distance_cm; // distance: in cm
uint16_t voltage_mv; // voltage in millivolts,
// if applicable, otherwise 0
enum RangeFinder_Status status; // sensor status
uint8_t range_valid_count; // number of consecutive valid readings (maxes out at 10)
bool pre_arm_check; // true if sensor has passed pre-arm checks
uint16_t pre_arm_distance_min; // min distance captured during pre-arm checks
uint16_t pre_arm_distance_max; // max distance captured during pre-arm checks
};
// parameters for each instance
AP_Int8 _type[RANGEFINDER_MAX_INSTANCES];
AP_Int8 _pin[RANGEFINDER_MAX_INSTANCES];
AP_Int8 _ratiometric[RANGEFINDER_MAX_INSTANCES];
AP_Int8 _stop_pin[RANGEFINDER_MAX_INSTANCES];
AP_Int16 _settle_time_ms[RANGEFINDER_MAX_INSTANCES];
AP_Float _scaling[RANGEFINDER_MAX_INSTANCES];
AP_Float _offset[RANGEFINDER_MAX_INSTANCES];
AP_Int8 _function[RANGEFINDER_MAX_INSTANCES];
AP_Int16 _min_distance_cm[RANGEFINDER_MAX_INSTANCES];
AP_Int16 _max_distance_cm[RANGEFINDER_MAX_INSTANCES];
AP_Int8 _ground_clearance_cm[RANGEFINDER_MAX_INSTANCES];
AP_Int8 _address[RANGEFINDER_MAX_INSTANCES];
AP_Int16 _powersave_range;
AP_Vector3f _pos_offset[RANGEFINDER_MAX_INSTANCES]; // position offset in body frame
AP_Int8 _orientation[RANGEFINDER_MAX_INSTANCES];
static const struct AP_Param::GroupInfo var_info[];
// Return the number of range finder instances
uint8_t num_sensors(void) const {
return num_instances;
}
// detect and initialise any available rangefinders
void init(void);
// update state of all rangefinders. Should be called at around
// 10Hz from main loop
void update(void);
// Handle an incoming DISTANCE_SENSOR message (from a MAVLink enabled range finder)
void handle_msg(mavlink_message_t *msg);
#define _RangeFinder_STATE(instance) state[instance]
// return true if we have a range finder with the specified orientation
bool has_orientation(enum Rotation orientation) const;
// find first range finder instance with the specified orientation
bool find_instance(enum Rotation orientation, uint8_t &instance) const;
// get orientation of a given range finder
enum Rotation get_orientation(uint8_t instance) const {
return (instance<num_instances? (enum Rotation)_orientation[instance].get() : ROTATION_NONE);
}
uint16_t distance_cm(uint8_t instance) const {
return (instance<num_instances? _RangeFinder_STATE(instance).distance_cm : 0);
}
uint16_t distance_cm_orient(enum Rotation orientation) const;
uint16_t voltage_mv(uint8_t instance) const {
return _RangeFinder_STATE(instance).voltage_mv;
}
uint16_t voltage_mv_orient(enum Rotation orientation) const;
int16_t max_distance_cm(uint8_t instance) const {
return _max_distance_cm[instance];
}
int16_t max_distance_cm_orient(enum Rotation orientation) const;
int16_t min_distance_cm(uint8_t instance) const {
return _min_distance_cm[instance];
}
int16_t min_distance_cm_orient(enum Rotation orientation) const;
int16_t ground_clearance_cm(uint8_t instance) const {
return _ground_clearance_cm[instance];
}
int16_t ground_clearance_cm_orient(enum Rotation orientation) const;
MAV_DISTANCE_SENSOR get_sensor_type(uint8_t instance) const;
MAV_DISTANCE_SENSOR get_sensor_type_orient(enum Rotation orientation) const;
// query status
RangeFinder_Status status(uint8_t instance) const;
RangeFinder_Status status_orient(enum Rotation orientation) const;
// true if sensor is returning data
bool has_data(uint8_t instance) const;
bool has_data_orient(enum Rotation orientation) const;
// returns count of consecutive good readings
uint8_t range_valid_count(uint8_t instance) const {
return _RangeFinder_STATE(instance).range_valid_count;
}
uint8_t range_valid_count_orient(enum Rotation orientation) const;
/*
set an externally estimated terrain height. Used to enable power
saving (where available) at high altitudes.
*/
void set_estimated_terrain_height(float height) {
estimated_terrain_height = height;
}
/*
returns true if pre-arm checks have passed for all range finders
these checks involve the user lifting or rotating the vehicle so that sensor readings between
the min and 2m can be captured
*/
bool pre_arm_check() const;
// return a 3D vector defining the position offset of the sensor in metres relative to the body frame origin
const Vector3f &get_pos_offset(uint8_t instance) const {
return _pos_offset[instance];
}
const Vector3f &get_pos_offset_orient(enum Rotation orientation) const;
private:
RangeFinder_State state[RANGEFINDER_MAX_INSTANCES];
AP_RangeFinder_Backend *drivers[RANGEFINDER_MAX_INSTANCES];
uint8_t num_instances:3;
float estimated_terrain_height;
AP_SerialManager &serial_manager;
Vector3f pos_offset_zero; // allows returning position offsets of zero for invalid requests
void detect_instance(uint8_t instance);
void update_instance(uint8_t instance);
void update_pre_arm_check(uint8_t instance);
bool _add_backend(AP_RangeFinder_Backend *driver);
};