ardupilot/libraries/AC_Fence/AC_Fence.cpp
khancyr 93fdbf1573 AC_Fence: reset fences breach on disable
Also rename enable function parameter
2017-08-02 12:49:08 +10:00

461 lines
16 KiB
C++

#include <AP_HAL/AP_HAL.h>
#include "AC_Fence.h"
#include <GCS_MAVLink/GCS_MAVLink.h>
#include <GCS_MAVLink/GCS.h>
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AC_Fence::var_info[] = {
// @Param: ENABLE
// @DisplayName: Fence enable/disable
// @Description: Allows you to enable (1) or disable (0) the fence functionality
// @Values: 0:Disabled,1:Enabled
// @User: Standard
AP_GROUPINFO("ENABLE", 0, AC_Fence, _enabled, 0),
// @Param: TYPE
// @DisplayName: Fence Type
// @Description: Enabled fence types held as bitmask
// @Values: 0:None,1:Altitude,2:Circle,3:Altitude and Circle,4:Polygon,5:Altitude and Polygon,6:Circle and Polygon,7:All
// @Bitmask: 0:Altitude,1:Circle,2:Polygon
// @User: Standard
AP_GROUPINFO("TYPE", 1, AC_Fence, _enabled_fences, AC_FENCE_TYPE_ALT_MAX | AC_FENCE_TYPE_CIRCLE | AC_FENCE_TYPE_POLYGON),
// @Param: ACTION
// @DisplayName: Fence Action
// @Description: What action should be taken when fence is breached
// @Values: 0:Report Only,1:RTL or Land
// @User: Standard
AP_GROUPINFO("ACTION", 2, AC_Fence, _action, AC_FENCE_ACTION_RTL_AND_LAND),
// @Param: ALT_MAX
// @DisplayName: Fence Maximum Altitude
// @Description: Maximum altitude allowed before geofence triggers
// @Units: m
// @Range: 10 1000
// @Increment: 1
// @User: Standard
AP_GROUPINFO("ALT_MAX", 3, AC_Fence, _alt_max, AC_FENCE_ALT_MAX_DEFAULT),
// @Param: RADIUS
// @DisplayName: Circular Fence Radius
// @Description: Circle fence radius which when breached will cause an RTL
// @Units: m
// @Range: 30 10000
// @User: Standard
AP_GROUPINFO("RADIUS", 4, AC_Fence, _circle_radius, AC_FENCE_CIRCLE_RADIUS_DEFAULT),
// @Param: MARGIN
// @DisplayName: Fence Margin
// @Description: Distance that autopilot's should maintain from the fence to avoid a breach
// @Units: m
// @Range: 1 10
// @User: Standard
AP_GROUPINFO("MARGIN", 5, AC_Fence, _margin, AC_FENCE_MARGIN_DEFAULT),
// @Param: TOTAL
// @DisplayName: Fence polygon point total
// @Description: Number of polygon points saved in eeprom (do not update manually)
// @Range: 1 20
// @User: Standard
AP_GROUPINFO("TOTAL", 6, AC_Fence, _total, 0),
// @Param: ALT_MIN
// @DisplayName: Fence Minimum Altitude
// @Description: Minimum altitude allowed before geofence triggers
// @Units: m
// @Range: -100 100
// @Increment: 1
// @User: Standard
AP_GROUPINFO_FRAME("ALT_MIN", 7, AC_Fence, _alt_min, AC_FENCE_ALT_MIN_DEFAULT, AP_PARAM_FRAME_SUB),
AP_GROUPEND
};
/// Default constructor.
AC_Fence::AC_Fence(const AP_AHRS& ahrs, const AP_InertialNav& inav) :
_ahrs(ahrs),
_inav(inav),
_alt_max_backup(0),
_circle_radius_backup(0),
_alt_max_breach_distance(0),
_circle_breach_distance(0),
_home_distance(0),
_breached_fences(AC_FENCE_TYPE_NONE),
_breach_time(0),
_breach_count(0),
_manual_recovery_start_ms(0)
{
AP_Param::setup_object_defaults(this, var_info);
// check for silly fence values
if (_alt_max < 0.0f) {
_alt_max.set_and_save(AC_FENCE_ALT_MAX_DEFAULT);
}
if (_circle_radius < 0) {
_circle_radius.set_and_save(AC_FENCE_CIRCLE_RADIUS_DEFAULT);
}
}
void AC_Fence::enable(bool value)
{
_enabled = value;
if (!value) {
clear_breach(AC_FENCE_TYPE_ALT_MAX | AC_FENCE_TYPE_CIRCLE | AC_FENCE_TYPE_POLYGON);
}
}
/// get_enabled_fences - returns bitmask of enabled fences
uint8_t AC_Fence::get_enabled_fences() const
{
if (!_enabled) {
return AC_FENCE_TYPE_NONE;
}else{
return _enabled_fences;
}
}
/// pre_arm_check - returns true if all pre-takeoff checks have completed successfully
bool AC_Fence::pre_arm_check(const char* &fail_msg) const
{
fail_msg = nullptr;
// if not enabled or not fence set-up always return true
if (!_enabled || _enabled_fences == AC_FENCE_TYPE_NONE) {
return true;
}
// check no limits are currently breached
if (_breached_fences != AC_FENCE_TYPE_NONE) {
fail_msg = "vehicle outside fence";
return false;
}
// if we have horizontal limits enabled, check inertial nav position is ok
if ((_enabled_fences & (AC_FENCE_TYPE_CIRCLE | AC_FENCE_TYPE_POLYGON))>0 && !_inav.get_filter_status().flags.horiz_pos_abs && !_inav.get_filter_status().flags.pred_horiz_pos_abs) {
fail_msg = "fence requires position";
return false;
}
// if we got this far everything must be ok
return true;
}
/// check_fence - returns the fence type that has been breached (if any)
/// curr_alt is the altitude above home in meters
uint8_t AC_Fence::check_fence(float curr_alt)
{
uint8_t ret = AC_FENCE_TYPE_NONE;
// return immediately if disabled
if (!_enabled || _enabled_fences == AC_FENCE_TYPE_NONE) {
return AC_FENCE_TYPE_NONE;
}
// check if pilot is attempting to recover manually
if (_manual_recovery_start_ms != 0) {
// we ignore any fence breaches during the manual recovery period which is about 10 seconds
if ((AP_HAL::millis() - _manual_recovery_start_ms) < AC_FENCE_MANUAL_RECOVERY_TIME_MIN) {
return AC_FENCE_TYPE_NONE;
} else {
// recovery period has passed so reset manual recovery time and continue with fence breach checks
_manual_recovery_start_ms = 0;
}
}
// altitude fence check
if ((_enabled_fences & AC_FENCE_TYPE_ALT_MAX) != 0) {
// check if we are over the altitude fence
if( curr_alt >= _alt_max ) {
// record distance above breach
_alt_max_breach_distance = curr_alt - _alt_max;
// check for a new breach or a breach of the backup fence
if ((_breached_fences & AC_FENCE_TYPE_ALT_MAX) == 0 || (!is_zero(_alt_max_backup) && curr_alt >= _alt_max_backup)) {
// record that we have breached the upper limit
record_breach(AC_FENCE_TYPE_ALT_MAX);
ret |= AC_FENCE_TYPE_ALT_MAX;
// create a backup fence 20m higher up
_alt_max_backup = curr_alt + AC_FENCE_ALT_MAX_BACKUP_DISTANCE;
}
}else{
// clear alt breach if present
if ((_breached_fences & AC_FENCE_TYPE_ALT_MAX) != 0) {
clear_breach(AC_FENCE_TYPE_ALT_MAX);
_alt_max_backup = 0.0f;
_alt_max_breach_distance = 0.0f;
}
}
}
// circle fence check
if ((_enabled_fences & AC_FENCE_TYPE_CIRCLE) != 0 ) {
// check if we are outside the fence
if (_home_distance >= _circle_radius) {
// record distance outside the fence
_circle_breach_distance = _home_distance - _circle_radius;
// check for a new breach or a breach of the backup fence
if ((_breached_fences & AC_FENCE_TYPE_CIRCLE) == 0 || (!is_zero(_circle_radius_backup) && _home_distance >= _circle_radius_backup)) {
// record that we have breached the circular distance limit
record_breach(AC_FENCE_TYPE_CIRCLE);
ret |= AC_FENCE_TYPE_CIRCLE;
// create a backup fence 20m further out
_circle_radius_backup = _home_distance + AC_FENCE_CIRCLE_RADIUS_BACKUP_DISTANCE;
}
}else{
// clear circle breach if present
if ((_breached_fences & AC_FENCE_TYPE_CIRCLE) != 0) {
clear_breach(AC_FENCE_TYPE_CIRCLE);
_circle_radius_backup = 0.0f;
_circle_breach_distance = 0.0f;
}
}
}
// polygon fence check
if ((_enabled_fences & AC_FENCE_TYPE_POLYGON) != 0 ) {
// check consistency of number of points
if (_boundary_num_points != _total) {
_boundary_loaded = false;
}
// load fence if necessary
if (!_boundary_loaded) {
load_polygon_from_eeprom();
} else if (_boundary_valid) {
// check if vehicle is outside the polygon fence
const Vector3f& position = _inav.get_position();
if (_poly_loader.boundary_breached(Vector2f(position.x, position.y), _boundary_num_points, _boundary, true)) {
// check if this is a new breach
if ((_breached_fences & AC_FENCE_TYPE_POLYGON) == 0) {
// record that we have breached the polygon
record_breach(AC_FENCE_TYPE_POLYGON);
ret |= AC_FENCE_TYPE_POLYGON;
}
} else {
// clear breach if present
if ((_breached_fences & AC_FENCE_TYPE_POLYGON) != 0) {
clear_breach(AC_FENCE_TYPE_POLYGON);
}
}
}
}
// return any new breaches that have occurred
return ret;
}
// returns true if the destination is within fence (used to reject waypoints outside the fence)
bool AC_Fence::check_destination_within_fence(const Location_Class& loc)
{
// Altitude fence check
if ((get_enabled_fences() & AC_FENCE_TYPE_ALT_MAX)) {
int32_t alt_above_home_cm;
if (loc.get_alt_cm(Location_Class::ALT_FRAME_ABOVE_HOME, alt_above_home_cm)) {
if ((alt_above_home_cm * 0.01f) > _alt_max) {
return false;
}
}
}
// Circular fence check
if ((get_enabled_fences() & AC_FENCE_TYPE_CIRCLE)) {
if ((get_distance_cm(_ahrs.get_home(), loc) * 0.01f) > _circle_radius) {
return false;
}
}
// polygon fence check
if ((get_enabled_fences() & AC_FENCE_TYPE_POLYGON) && _boundary_num_points > 0) {
// check ekf has a good location
Location temp_loc;
if (_inav.get_location(temp_loc)) {
const struct Location &ekf_origin = _inav.get_origin();
Vector2f position = location_diff(ekf_origin, loc) * 100.0f;
if (_poly_loader.boundary_breached(position, _boundary_num_points, _boundary, true)) {
return false;
}
}
}
return true;
}
/// record_breach - update breach bitmask, time and count
void AC_Fence::record_breach(uint8_t fence_type)
{
// if we haven't already breached a limit, update the breach time
if (_breached_fences == AC_FENCE_TYPE_NONE) {
_breach_time = AP_HAL::millis();
}
// update breach count
if (_breach_count < 65500) {
_breach_count++;
}
// update bitmask
_breached_fences |= fence_type;
}
/// clear_breach - update breach bitmask, time and count
void AC_Fence::clear_breach(uint8_t fence_type)
{
// return immediately if this fence type was not breached
if ((_breached_fences & fence_type) == 0) {
return;
}
// update bitmask
_breached_fences &= ~fence_type;
}
/// get_breach_distance - returns distance in meters outside of the given fence
float AC_Fence::get_breach_distance(uint8_t fence_type) const
{
switch (fence_type) {
case AC_FENCE_TYPE_ALT_MAX:
return _alt_max_breach_distance;
break;
case AC_FENCE_TYPE_CIRCLE:
return _circle_breach_distance;
break;
case AC_FENCE_TYPE_ALT_MAX | AC_FENCE_TYPE_CIRCLE:
return MAX(_alt_max_breach_distance,_circle_breach_distance);
}
// we don't recognise the fence type so just return 0
return 0;
}
/// manual_recovery_start - caller indicates that pilot is re-taking manual control so fence should be disabled for 10 seconds
/// has no effect if no breaches have occurred
void AC_Fence::manual_recovery_start()
{
// return immediate if we haven't breached a fence
if (_breached_fences == AC_FENCE_TYPE_NONE) {
return;
}
// record time pilot began manual recovery
_manual_recovery_start_ms = AP_HAL::millis();
}
/// returns pointer to array of polygon points and num_points is filled in with the total number
Vector2f* AC_Fence::get_polygon_points(uint16_t& num_points) const
{
num_points = _boundary_num_points;
return _boundary;
}
/// returns true if we've breached the polygon boundary. simple passthrough to underlying _poly_loader object
bool AC_Fence::boundary_breached(const Vector2f& location, uint16_t num_points, const Vector2f* points) const
{
return _poly_loader.boundary_breached(location, num_points, points, true);
}
/// handler for polygon fence messages with GCS
void AC_Fence::handle_msg(GCS_MAVLINK &link, mavlink_message_t* msg)
{
// exit immediately if null message
if (msg == nullptr) {
return;
}
switch (msg->msgid) {
// receive a fence point from GCS and store in EEPROM
case MAVLINK_MSG_ID_FENCE_POINT: {
mavlink_fence_point_t packet;
mavlink_msg_fence_point_decode(msg, &packet);
if (!check_latlng(packet.lat,packet.lng)) {
link.send_text(MAV_SEVERITY_WARNING, "Invalid fence point, lat or lng too large");
} else {
Vector2l point;
point.x = packet.lat*1.0e7f;
point.y = packet.lng*1.0e7f;
if (!_poly_loader.save_point_to_eeprom(packet.idx, point)) {
link.send_text(MAV_SEVERITY_WARNING, "Failed to save polygon point, too many points?");
} else {
// trigger reload of points
_boundary_loaded = false;
}
}
break;
}
// send a fence point to GCS
case MAVLINK_MSG_ID_FENCE_FETCH_POINT: {
mavlink_fence_fetch_point_t packet;
mavlink_msg_fence_fetch_point_decode(msg, &packet);
// attempt to retrieve from eeprom
Vector2l point;
if (_poly_loader.load_point_from_eeprom(packet.idx, point)) {
mavlink_msg_fence_point_send_buf(msg, link.get_chan(), msg->sysid, msg->compid, packet.idx, _total, point.x*1.0e-7f, point.y*1.0e-7f);
} else {
link.send_text(MAV_SEVERITY_WARNING, "Bad fence point");
}
break;
}
default:
// do nothing
break;
}
}
/// load polygon points stored in eeprom into boundary array and perform validation
bool AC_Fence::load_polygon_from_eeprom(bool force_reload)
{
// exit immediately if already loaded
if (_boundary_loaded && !force_reload) {
return true;
}
// check if we need to create array
if (!_boundary_create_attempted) {
_boundary = (Vector2f *)_poly_loader.create_point_array(sizeof(Vector2f));
_boundary_create_attempted = true;
}
// exit if we could not allocate RAM for the boundary
if (_boundary == nullptr) {
return false;
}
// get current location from EKF
Location temp_loc;
if (!_inav.get_location(temp_loc)) {
return false;
}
const struct Location &ekf_origin = _inav.get_origin();
// sanity check total
_total = constrain_int16(_total, 0, _poly_loader.max_points());
// load each point from eeprom
Vector2l temp_latlon;
for (uint16_t index=0; index<_total; index++) {
// load boundary point as lat/lon point
_poly_loader.load_point_from_eeprom(index, temp_latlon);
// move into location structure and convert to offset from ekf origin
temp_loc.lat = temp_latlon.x;
temp_loc.lng = temp_latlon.y;
_boundary[index] = location_diff(ekf_origin, temp_loc) * 100.0f;
}
_boundary_num_points = _total;
_boundary_loaded = true;
// update validity of polygon
_boundary_valid = _poly_loader.boundary_valid(_boundary_num_points, _boundary, true);
return true;
}