ardupilot/ArduPlane/GCS_Mavlink.pde

1749 lines
54 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
// default sensors are present and healthy: gyro, accelerometer, barometer, rate_control, attitude_stabilization, yaw_position, altitude control, x/y position control, motor_control
#define MAVLINK_SENSOR_PRESENT_DEFAULT (MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL | MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE | MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL | MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION | MAV_SYS_STATUS_SENSOR_YAW_POSITION | MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL | MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL | MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS | MAV_SYS_STATUS_AHRS)
// use this to prevent recursion during sensor init
static bool in_mavlink_delay;
// true if we are out of time in our event timeslice
static bool gcs_out_of_time;
/*
* !!NOTE!!
*
* the use of NOINLINE separate functions for each message type avoids
* a compiler bug in gcc that would cause it to use far more stack
* space than is needed. Without the NOINLINE we use the sum of the
* stack needed for each message type. Please be careful to follow the
* pattern below when adding any new messages
*/
static NOINLINE void send_heartbeat(mavlink_channel_t chan)
{
uint8_t base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
uint8_t system_status = is_flying() ? MAV_STATE_ACTIVE : MAV_STATE_STANDBY;
uint32_t custom_mode = control_mode;
if (failsafe.state != FAILSAFE_NONE) {
system_status = MAV_STATE_CRITICAL;
}
// work out the base_mode. This value is not very useful
// for APM, but we calculate it as best we can so a generic
// MAVLink enabled ground station can work out something about
// what the MAV is up to. The actual bit values are highly
// ambiguous for most of the APM flight modes. In practice, you
// only get useful information from the custom_mode, which maps to
// the APM flight mode and has a well defined meaning in the
// ArduPlane documentation
switch (control_mode) {
case MANUAL:
case TRAINING:
case ACRO:
base_mode = MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
break;
case STABILIZE:
case FLY_BY_WIRE_A:
case AUTOTUNE:
case FLY_BY_WIRE_B:
case CRUISE:
base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED;
break;
case AUTO:
case RTL:
case LOITER:
case GUIDED:
case CIRCLE:
base_mode = MAV_MODE_FLAG_GUIDED_ENABLED |
MAV_MODE_FLAG_STABILIZE_ENABLED;
// note that MAV_MODE_FLAG_AUTO_ENABLED does not match what
// APM does in any mode, as that is defined as "system finds its own goal
// positions", which APM does not currently do
break;
case INITIALISING:
system_status = MAV_STATE_CALIBRATING;
break;
}
if (!training_manual_pitch || !training_manual_roll) {
base_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED;
}
if (control_mode != MANUAL && control_mode != INITIALISING) {
// stabiliser of some form is enabled
base_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED;
}
if (g.stick_mixing != STICK_MIXING_DISABLED && control_mode != INITIALISING) {
// all modes except INITIALISING have some form of manual
// override if stick mixing is enabled
base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
}
if (g.hil_mode == 1) {
base_mode |= MAV_MODE_FLAG_HIL_ENABLED;
}
// we are armed if we are not initialising
if (control_mode != INITIALISING && hal.util->get_soft_armed()) {
base_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
}
// indicate we have set a custom mode
base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
mavlink_msg_heartbeat_send(
chan,
MAV_TYPE_FIXED_WING,
MAV_AUTOPILOT_ARDUPILOTMEGA,
base_mode,
custom_mode,
system_status);
}
static NOINLINE void send_attitude(mavlink_channel_t chan)
{
Vector3f omega = ahrs.get_gyro();
mavlink_msg_attitude_send(
chan,
millis(),
ahrs.roll,
ahrs.pitch - radians(g.pitch_trim_cd*0.01f),
ahrs.yaw,
omega.x,
omega.y,
omega.z);
}
#if GEOFENCE_ENABLED == ENABLED
static NOINLINE void send_fence_status(mavlink_channel_t chan)
{
geofence_send_status(chan);
}
#endif
static NOINLINE void send_extended_status1(mavlink_channel_t chan)
{
uint32_t control_sensors_present;
uint32_t control_sensors_enabled;
uint32_t control_sensors_health;
// default sensors present
control_sensors_present = MAVLINK_SENSOR_PRESENT_DEFAULT;
// first what sensors/controllers we have
if (g.compass_enabled) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG; // compass present
}
if (airspeed.enabled()) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE;
}
if (gps.status() > AP_GPS::NO_GPS) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS;
}
#if OPTFLOW == ENABLED
if (optflow.enabled()) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW;
}
#endif
if (geofence_present()) {
control_sensors_present |= MAV_SYS_STATUS_GEOFENCE;
}
// all present sensors enabled by default except rate control, attitude stabilization, yaw, altitude, position control, geofence and motor output which we will set individually
control_sensors_enabled = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL & ~MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION & ~MAV_SYS_STATUS_SENSOR_YAW_POSITION & ~MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL & ~MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL & ~MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS & ~MAV_SYS_STATUS_GEOFENCE);
if (airspeed.enabled() && airspeed.use()) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE;
}
if (geofence_enabled()) {
control_sensors_enabled |= MAV_SYS_STATUS_GEOFENCE;
}
switch (control_mode) {
case MANUAL:
break;
case ACRO:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
break;
case STABILIZE:
case FLY_BY_WIRE_A:
case AUTOTUNE:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
break;
case FLY_BY_WIRE_B:
case CRUISE:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
break;
case TRAINING:
if (!training_manual_roll || !training_manual_pitch) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
}
break;
case AUTO:
case RTL:
case LOITER:
case GUIDED:
case CIRCLE:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_YAW_POSITION; // yaw position
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL; // altitude control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL; // X/Y position control
break;
case INITIALISING:
break;
}
// set motors outputs as enabled if safety switch is not disarmed (i.e. either NONE or ARMED)
if (hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS;
}
// default: all present sensors healthy except baro, 3D_MAG, GPS, DIFFERNTIAL_PRESSURE. GEOFENCE always defaults to healthy.
control_sensors_health = control_sensors_present & ~(MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE |
MAV_SYS_STATUS_SENSOR_3D_MAG |
MAV_SYS_STATUS_SENSOR_GPS |
MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE);
control_sensors_health |= MAV_SYS_STATUS_GEOFENCE;
if (ahrs.initialised() && !ahrs.healthy()) {
// AHRS subsystem is unhealthy
control_sensors_health &= ~MAV_SYS_STATUS_AHRS;
}
if (ahrs.have_inertial_nav() && !ins.calibrated()) {
// trying to use EKF without properly calibrated accelerometers
control_sensors_health &= ~MAV_SYS_STATUS_AHRS;
}
if (barometer.all_healthy()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE;
}
if (g.compass_enabled && compass.healthy(0) && ahrs.use_compass()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_MAG;
}
if (gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_GPS;
}
#if OPTFLOW == ENABLED
if (optflow.healthy()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW;
}
#endif
if (!ins.get_gyro_health_all() || (!g.skip_gyro_cal && !ins.gyro_calibrated_ok_all())) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_GYRO;
}
if (!ins.get_accel_health_all()) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_ACCEL;
}
if (airspeed.healthy()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE;
}
if (geofence_breached()) {
control_sensors_health &= ~MAV_SYS_STATUS_GEOFENCE;
}
int16_t battery_current = -1;
int8_t battery_remaining = -1;
if (battery.has_current() && battery.healthy()) {
battery_remaining = battery.capacity_remaining_pct();
battery_current = battery.current_amps() * 100;
}
#if AP_TERRAIN_AVAILABLE
switch (terrain.status()) {
case AP_Terrain::TerrainStatusDisabled:
break;
case AP_Terrain::TerrainStatusUnhealthy:
control_sensors_present |= MAV_SYS_STATUS_TERRAIN;
control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN;
break;
case AP_Terrain::TerrainStatusOK:
control_sensors_present |= MAV_SYS_STATUS_TERRAIN;
control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN;
control_sensors_health |= MAV_SYS_STATUS_TERRAIN;
break;
}
#endif
if (rangefinder.num_sensors() > 0) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
if (g.rangefinder_landing) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
}
if (rangefinder.has_data()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
}
}
if (AP_Notify::flags.initialising) {
// while initialising the gyros and accels are not enabled
control_sensors_enabled &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL);
control_sensors_health &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL);
}
mavlink_msg_sys_status_send(
chan,
control_sensors_present,
control_sensors_enabled,
control_sensors_health,
(uint16_t)(scheduler.load_average(20000) * 1000),
battery.voltage() * 1000, // mV
battery_current, // in 10mA units
battery_remaining, // in %
0, // comm drops %,
0, // comm drops in pkts,
0, 0, 0, 0);
}
static void NOINLINE send_location(mavlink_channel_t chan)
{
uint32_t fix_time_ms;
// if we have a GPS fix, take the time as the last fix time. That
// allows us to correctly calculate velocities and extrapolate
// positions.
// If we don't have a GPS fix then we are dead reckoning, and will
// use the current boot time as the fix time.
if (gps.status() >= AP_GPS::GPS_OK_FIX_2D) {
fix_time_ms = gps.last_fix_time_ms();
} else {
fix_time_ms = hal.scheduler->millis();
}
const Vector3f &vel = gps.velocity();
mavlink_msg_global_position_int_send(
chan,
fix_time_ms,
current_loc.lat, // in 1E7 degrees
current_loc.lng, // in 1E7 degrees
gps.location().alt * 10UL, // millimeters above sea level
relative_altitude() * 1.0e3f, // millimeters above ground
vel.x * 100, // X speed cm/s (+ve North)
vel.y * 100, // Y speed cm/s (+ve East)
vel.z * -100, // Z speed cm/s (+ve up)
ahrs.yaw_sensor);
}
static void NOINLINE send_nav_controller_output(mavlink_channel_t chan)
{
mavlink_msg_nav_controller_output_send(
chan,
nav_roll_cd * 0.01f,
nav_pitch_cd * 0.01f,
nav_controller->nav_bearing_cd() * 0.01f,
nav_controller->target_bearing_cd() * 0.01f,
auto_state.wp_distance,
altitude_error_cm * 0.01f,
airspeed_error_cm,
nav_controller->crosstrack_error());
}
void NOINLINE send_servo_out(mavlink_channel_t chan)
{
// normalized values scaled to -10000 to 10000
// This is used for HIL. Do not change without discussing with
// HIL maintainers
mavlink_msg_rc_channels_scaled_send(
chan,
millis(),
0, // port 0
10000 * channel_roll->norm_output() * (channel_roll->get_reverse()?-1:1),
10000 * channel_pitch->norm_output() * (channel_pitch->get_reverse()?-1:1),
10000 * channel_throttle->norm_output() * (channel_throttle->get_reverse()?-1:1),
10000 * channel_rudder->norm_output() * (channel_rudder->get_reverse()?-1:1),
0,
0,
0,
0,
receiver_rssi);
}
static void NOINLINE send_radio_out(mavlink_channel_t chan)
{
if (g.hil_mode==1 && !g.hil_servos) {
mavlink_msg_servo_output_raw_send(
chan,
micros(),
0, // port
RC_Channel::rc_channel(0)->radio_out,
RC_Channel::rc_channel(1)->radio_out,
RC_Channel::rc_channel(2)->radio_out,
RC_Channel::rc_channel(3)->radio_out,
RC_Channel::rc_channel(4)->radio_out,
RC_Channel::rc_channel(5)->radio_out,
RC_Channel::rc_channel(6)->radio_out,
RC_Channel::rc_channel(7)->radio_out);
return;
}
mavlink_msg_servo_output_raw_send(
chan,
micros(),
0, // port
hal.rcout->read(0),
hal.rcout->read(1),
hal.rcout->read(2),
hal.rcout->read(3),
hal.rcout->read(4),
hal.rcout->read(5),
hal.rcout->read(6),
hal.rcout->read(7));
}
static void NOINLINE send_vfr_hud(mavlink_channel_t chan)
{
float aspeed;
if (airspeed.enabled()) {
aspeed = airspeed.get_airspeed();
} else if (!ahrs.airspeed_estimate(&aspeed)) {
aspeed = 0;
}
mavlink_msg_vfr_hud_send(
chan,
aspeed,
gps.ground_speed(),
(ahrs.yaw_sensor / 100) % 360,
throttle_percentage(),
current_loc.alt / 100.0f,
barometer.get_climb_rate());
}
/*
keep last HIL_STATE message to allow sending SIM_STATE
*/
static mavlink_hil_state_t last_hil_state;
// report simulator state
static void NOINLINE send_simstate(mavlink_channel_t chan)
{
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
sitl.simstate_send(chan);
#else
if (g.hil_mode == 1) {
mavlink_msg_simstate_send(chan,
last_hil_state.roll,
last_hil_state.pitch,
last_hil_state.yaw,
last_hil_state.xacc*0.001f*GRAVITY_MSS,
last_hil_state.yacc*0.001f*GRAVITY_MSS,
last_hil_state.zacc*0.001f*GRAVITY_MSS,
last_hil_state.rollspeed,
last_hil_state.pitchspeed,
last_hil_state.yawspeed,
last_hil_state.lat,
last_hil_state.lon);
}
#endif
}
static void NOINLINE send_hwstatus(mavlink_channel_t chan)
{
mavlink_msg_hwstatus_send(
chan,
hal.analogin->board_voltage()*1000,
hal.i2c->lockup_count());
}
static void NOINLINE send_wind(mavlink_channel_t chan)
{
Vector3f wind = ahrs.wind_estimate();
mavlink_msg_wind_send(
chan,
degrees(atan2f(-wind.y, -wind.x)), // use negative, to give
// direction wind is coming from
wind.length(),
wind.z);
}
static void NOINLINE send_rangefinder(mavlink_channel_t chan)
{
if (!rangefinder.has_data()) {
// no sonar to report
return;
}
mavlink_msg_rangefinder_send(
chan,
rangefinder.distance_cm() * 0.01f,
rangefinder.voltage_mv()*0.001f);
}
static void NOINLINE send_current_waypoint(mavlink_channel_t chan)
{
mavlink_msg_mission_current_send(chan, mission.get_current_nav_index());
}
static void NOINLINE send_statustext(mavlink_channel_t chan)
{
mavlink_statustext_t *s = &gcs[chan-MAVLINK_COMM_0].pending_status;
mavlink_msg_statustext_send(
chan,
s->severity,
s->text);
}
// are we still delaying telemetry to try to avoid Xbee bricking?
static bool telemetry_delayed(mavlink_channel_t chan)
{
uint32_t tnow = millis() >> 10;
if (tnow > (uint32_t)g.telem_delay) {
return false;
}
if (chan == MAVLINK_COMM_0 && hal.gpio->usb_connected()) {
// this is USB telemetry, so won't be an Xbee
return false;
}
// we're either on the 2nd UART, or no USB cable is connected
// we need to delay telemetry by the TELEM_DELAY time
return true;
}
// check if a message will fit in the payload space available
#define CHECK_PAYLOAD_SIZE(id) if (txspace < MAVLINK_NUM_NON_PAYLOAD_BYTES+MAVLINK_MSG_ID_ ## id ## _LEN) return false
// try to send a message, return false if it won't fit in the serial tx buffer
bool GCS_MAVLINK::try_send_message(enum ap_message id)
{
uint16_t txspace = comm_get_txspace(chan);
if (telemetry_delayed(chan)) {
return false;
}
// if we don't have at least 1ms remaining before the main loop
// wants to fire then don't send a mavlink message. We want to
// prioritise the main flight control loop over communications
if (!in_mavlink_delay && scheduler.time_available_usec() < 1200) {
gcs_out_of_time = true;
return false;
}
switch (id) {
case MSG_HEARTBEAT:
CHECK_PAYLOAD_SIZE(HEARTBEAT);
gcs[chan-MAVLINK_COMM_0].last_heartbeat_time = hal.scheduler->millis();
send_heartbeat(chan);
return true;
case MSG_EXTENDED_STATUS1:
CHECK_PAYLOAD_SIZE(SYS_STATUS);
send_extended_status1(chan);
CHECK_PAYLOAD_SIZE(POWER_STATUS);
gcs[chan-MAVLINK_COMM_0].send_power_status();
break;
case MSG_EXTENDED_STATUS2:
CHECK_PAYLOAD_SIZE(MEMINFO);
gcs[chan-MAVLINK_COMM_0].send_meminfo();
break;
case MSG_ATTITUDE:
CHECK_PAYLOAD_SIZE(ATTITUDE);
send_attitude(chan);
break;
case MSG_LOCATION:
CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT);
send_location(chan);
break;
case MSG_LOCAL_POSITION:
CHECK_PAYLOAD_SIZE(LOCAL_POSITION_NED);
send_local_position(ahrs);
break;
case MSG_NAV_CONTROLLER_OUTPUT:
if (control_mode != MANUAL) {
CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT);
send_nav_controller_output(chan);
}
break;
case MSG_GPS_RAW:
CHECK_PAYLOAD_SIZE(GPS_RAW_INT);
gcs[chan-MAVLINK_COMM_0].send_gps_raw(gps);
break;
case MSG_SYSTEM_TIME:
CHECK_PAYLOAD_SIZE(SYSTEM_TIME);
gcs[chan-MAVLINK_COMM_0].send_system_time(gps);
break;
case MSG_SERVO_OUT:
if (g.hil_mode == 1) {
CHECK_PAYLOAD_SIZE(RC_CHANNELS_SCALED);
send_servo_out(chan);
}
break;
case MSG_RADIO_IN:
CHECK_PAYLOAD_SIZE(RC_CHANNELS_RAW);
gcs[chan-MAVLINK_COMM_0].send_radio_in(receiver_rssi);
break;
case MSG_RADIO_OUT:
CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW);
send_radio_out(chan);
break;
case MSG_VFR_HUD:
CHECK_PAYLOAD_SIZE(VFR_HUD);
send_vfr_hud(chan);
break;
case MSG_RAW_IMU1:
CHECK_PAYLOAD_SIZE(RAW_IMU);
gcs[chan-MAVLINK_COMM_0].send_raw_imu(ins, compass);
break;
case MSG_RAW_IMU2:
CHECK_PAYLOAD_SIZE(SCALED_PRESSURE);
gcs[chan-MAVLINK_COMM_0].send_scaled_pressure(barometer);
break;
case MSG_RAW_IMU3:
CHECK_PAYLOAD_SIZE(SENSOR_OFFSETS);
gcs[chan-MAVLINK_COMM_0].send_sensor_offsets(ins, compass, barometer);
break;
case MSG_CURRENT_WAYPOINT:
CHECK_PAYLOAD_SIZE(MISSION_CURRENT);
send_current_waypoint(chan);
break;
case MSG_NEXT_PARAM:
CHECK_PAYLOAD_SIZE(PARAM_VALUE);
gcs[chan-MAVLINK_COMM_0].queued_param_send();
break;
case MSG_NEXT_WAYPOINT:
CHECK_PAYLOAD_SIZE(MISSION_REQUEST);
gcs[chan-MAVLINK_COMM_0].queued_waypoint_send();
break;
case MSG_STATUSTEXT:
CHECK_PAYLOAD_SIZE(STATUSTEXT);
send_statustext(chan);
break;
#if GEOFENCE_ENABLED == ENABLED
case MSG_FENCE_STATUS:
CHECK_PAYLOAD_SIZE(FENCE_STATUS);
send_fence_status(chan);
break;
#endif
case MSG_AHRS:
CHECK_PAYLOAD_SIZE(AHRS);
gcs[chan-MAVLINK_COMM_0].send_ahrs(ahrs);
break;
case MSG_SIMSTATE:
CHECK_PAYLOAD_SIZE(SIMSTATE);
send_simstate(chan);
CHECK_PAYLOAD_SIZE(AHRS2);
gcs[chan-MAVLINK_COMM_0].send_ahrs2(ahrs);
break;
case MSG_HWSTATUS:
CHECK_PAYLOAD_SIZE(HWSTATUS);
send_hwstatus(chan);
break;
case MSG_RANGEFINDER:
CHECK_PAYLOAD_SIZE(RANGEFINDER);
send_rangefinder(chan);
break;
case MSG_TERRAIN:
#if AP_TERRAIN_AVAILABLE
CHECK_PAYLOAD_SIZE(TERRAIN_REQUEST);
terrain.send_request(chan);
#endif
break;
case MSG_CAMERA_FEEDBACK:
#if CAMERA == ENABLED
CHECK_PAYLOAD_SIZE(CAMERA_FEEDBACK);
camera.send_feedback(chan, gps, ahrs, current_loc);
#endif
break;
case MSG_BATTERY2:
CHECK_PAYLOAD_SIZE(BATTERY2);
gcs[chan-MAVLINK_COMM_0].send_battery2(battery);
break;
case MSG_WIND:
CHECK_PAYLOAD_SIZE(WIND);
send_wind(chan);
break;
case MSG_MOUNT_STATUS:
#if MOUNT == ENABLED
CHECK_PAYLOAD_SIZE(MOUNT_STATUS);
camera_mount.status_msg(chan);
#endif // MOUNT == ENABLED
break;
case MSG_OPTICAL_FLOW:
#if OPTFLOW == ENABLED
CHECK_PAYLOAD_SIZE(OPTICAL_FLOW);
gcs[chan-MAVLINK_COMM_0].send_opticalflow(ahrs, optflow);
#endif
break;
case MSG_EKF_STATUS_REPORT:
#if AP_AHRS_NAVEKF_AVAILABLE
CHECK_PAYLOAD_SIZE(EKF_STATUS_REPORT);
ahrs.get_NavEKF().send_status_report(chan);
#endif
break;
case MSG_RETRY_DEFERRED:
break; // just here to prevent a warning
case MSG_LIMITS_STATUS:
case MSG_GIMBAL_REPORT:
// unused
break;
}
return true;
}
/*
default stream rates to 1Hz
*/
const AP_Param::GroupInfo GCS_MAVLINK::var_info[] PROGMEM = {
// @Param: RAW_SENS
// @DisplayName: Raw sensor stream rate
// @Description: Raw sensor stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRates[0], 1),
// @Param: EXT_STAT
// @DisplayName: Extended status stream rate to ground station
// @Description: Extended status stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRates[1], 1),
// @Param: RC_CHAN
// @DisplayName: RC Channel stream rate to ground station
// @Description: RC Channel stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK, streamRates[2], 1),
// @Param: RAW_CTRL
// @DisplayName: Raw Control stream rate to ground station
// @Description: Raw Control stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK, streamRates[3], 1),
// @Param: POSITION
// @DisplayName: Position stream rate to ground station
// @Description: Position stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRates[4], 1),
// @Param: EXTRA1
// @DisplayName: Extra data type 1 stream rate to ground station
// @Description: Extra data type 1 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK, streamRates[5], 1),
// @Param: EXTRA2
// @DisplayName: Extra data type 2 stream rate to ground station
// @Description: Extra data type 2 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK, streamRates[6], 1),
// @Param: EXTRA3
// @DisplayName: Extra data type 3 stream rate to ground station
// @Description: Extra data type 3 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK, streamRates[7], 1),
// @Param: PARAMS
// @DisplayName: Parameter stream rate to ground station
// @Description: Parameter stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK, streamRates[8], 10),
AP_GROUPEND
};
// see if we should send a stream now. Called at 50Hz
bool GCS_MAVLINK::stream_trigger(enum streams stream_num)
{
if (stream_num >= NUM_STREAMS) {
return false;
}
float rate = (uint8_t)streamRates[stream_num].get();
// send at a much lower rate while handling waypoints and
// parameter sends
if ((stream_num != STREAM_PARAMS) &&
(waypoint_receiving || _queued_parameter != NULL)) {
rate *= 0.25f;
}
if (rate <= 0) {
return false;
}
if (stream_ticks[stream_num] == 0) {
// we're triggering now, setup the next trigger point
if (rate > 50) {
rate = 50;
}
stream_ticks[stream_num] = (50 / rate) - 1 + stream_slowdown;
return true;
}
// count down at 50Hz
stream_ticks[stream_num]--;
return false;
}
void
GCS_MAVLINK::data_stream_send(void)
{
gcs_out_of_time = false;
if (!in_mavlink_delay) {
handle_log_send(DataFlash);
}
if (_queued_parameter != NULL) {
if (streamRates[STREAM_PARAMS].get() <= 0) {
streamRates[STREAM_PARAMS].set(10);
}
if (stream_trigger(STREAM_PARAMS)) {
send_message(MSG_NEXT_PARAM);
}
}
if (gcs_out_of_time) return;
if (in_mavlink_delay) {
if (g.hil_mode == 1) {
// in HIL we need to keep sending servo values to ensure
// the simulator doesn't pause, otherwise our sensor
// calibration could stall
if (stream_trigger(STREAM_RAW_CONTROLLER)) {
send_message(MSG_SERVO_OUT);
}
if (stream_trigger(STREAM_RC_CHANNELS)) {
send_message(MSG_RADIO_OUT);
}
}
// don't send any other stream types while in the delay callback
return;
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_RAW_SENSORS)) {
send_message(MSG_RAW_IMU1);
send_message(MSG_RAW_IMU2);
send_message(MSG_RAW_IMU3);
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_EXTENDED_STATUS)) {
send_message(MSG_EXTENDED_STATUS1);
send_message(MSG_EXTENDED_STATUS2);
send_message(MSG_CURRENT_WAYPOINT);
send_message(MSG_GPS_RAW);
send_message(MSG_NAV_CONTROLLER_OUTPUT);
send_message(MSG_FENCE_STATUS);
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_POSITION)) {
// sent with GPS read
send_message(MSG_LOCATION);
send_message(MSG_LOCAL_POSITION);
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_RAW_CONTROLLER)) {
send_message(MSG_SERVO_OUT);
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_RC_CHANNELS)) {
send_message(MSG_RADIO_OUT);
send_message(MSG_RADIO_IN);
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_EXTRA1)) {
send_message(MSG_ATTITUDE);
send_message(MSG_SIMSTATE);
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_EXTRA2)) {
send_message(MSG_VFR_HUD);
}
if (gcs_out_of_time) return;
if (stream_trigger(STREAM_EXTRA3)) {
send_message(MSG_AHRS);
send_message(MSG_HWSTATUS);
send_message(MSG_WIND);
send_message(MSG_RANGEFINDER);
send_message(MSG_SYSTEM_TIME);
#if AP_TERRAIN_AVAILABLE
send_message(MSG_TERRAIN);
#endif
send_message(MSG_BATTERY2);
send_message(MSG_MOUNT_STATUS);
send_message(MSG_OPTICAL_FLOW);
send_message(MSG_EKF_STATUS_REPORT);
}
}
/*
handle a request to switch to guided mode. This happens via a
callback from handle_mission_item()
*/
void GCS_MAVLINK::handle_guided_request(AP_Mission::Mission_Command &cmd)
{
guided_WP_loc = cmd.content.location;
// add home alt if needed
if (guided_WP_loc.flags.relative_alt) {
guided_WP_loc.alt += home.alt;
guided_WP_loc.flags.relative_alt = 0;
}
set_mode(GUIDED);
// make any new wp uploaded instant (in case we are already in Guided mode)
set_guided_WP();
}
/*
handle a request to change current WP altitude. This happens via a
callback from handle_mission_item()
*/
void GCS_MAVLINK::handle_change_alt_request(AP_Mission::Mission_Command &cmd)
{
next_WP_loc.alt = cmd.content.location.alt;
if (cmd.content.location.flags.relative_alt) {
next_WP_loc.alt += home.alt;
}
next_WP_loc.flags.relative_alt = false;
next_WP_loc.flags.terrain_alt = cmd.content.location.flags.terrain_alt;
reset_offset_altitude();
}
void GCS_MAVLINK::handleMessage(mavlink_message_t* msg)
{
switch (msg->msgid) {
case MAVLINK_MSG_ID_REQUEST_DATA_STREAM:
{
handle_request_data_stream(msg, true);
break;
}
case MAVLINK_MSG_ID_COMMAND_LONG:
{
// decode
mavlink_command_long_t packet;
mavlink_msg_command_long_decode(msg, &packet);
uint8_t result = MAV_RESULT_UNSUPPORTED;
// do command
send_text_P(SEVERITY_LOW,PSTR("command received: "));
switch(packet.command) {
case MAV_CMD_NAV_LOITER_UNLIM:
set_mode(LOITER);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
set_mode(RTL);
result = MAV_RESULT_ACCEPTED;
break;
#if MOUNT == ENABLED
// Sets the region of interest (ROI) for the camera
case MAV_CMD_DO_SET_ROI:
Location roi_loc;
roi_loc.lat = (int32_t)(packet.param5 * 1.0e7f);
roi_loc.lng = (int32_t)(packet.param6 * 1.0e7f);
roi_loc.alt = (int32_t)(packet.param7 * 100.0f);
if (roi_loc.lat == 0 && roi_loc.lng == 0 && roi_loc.alt == 0) {
// switch off the camera tracking if enabled
if (camera_mount.get_mode() == MAV_MOUNT_MODE_GPS_POINT) {
camera_mount.set_mode_to_default();
}
} else {
// send the command to the camera mount
camera_mount.set_roi_target(roi_loc);
}
result = MAV_RESULT_ACCEPTED;
break;
#endif
case MAV_CMD_MISSION_START:
set_mode(AUTO);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_PREFLIGHT_CALIBRATION:
in_calibration = true;
if (AP_Math::is_equal(packet.param1,1.0f)) {
ins.init_gyro();
if (ins.gyro_calibrated_ok_all()) {
ahrs.reset_gyro_drift();
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
} else if (AP_Math::is_equal(packet.param3,1.0f)) {
init_barometer();
if (airspeed.enabled()) {
zero_airspeed(false);
}
result = MAV_RESULT_ACCEPTED;
} else if (AP_Math::is_equal(packet.param4,1.0f)) {
trim_radio();
result = MAV_RESULT_ACCEPTED;
} else if (AP_Math::is_equal(packet.param5,1.0f)) {
float trim_roll, trim_pitch;
AP_InertialSensor_UserInteract_MAVLink interact(this);
if (g.skip_gyro_cal) {
// start with gyro calibration, otherwise if the user
// has SKIP_GYRO_CAL=1 they don't get to do it
ins.init_gyro();
}
if(ins.calibrate_accel(&interact, trim_roll, trim_pitch)) {
// reset ahrs's trim to suggested values from calibration routine
ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0));
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
}
else {
send_text_P(SEVERITY_LOW, PSTR("Unsupported preflight calibration"));
}
in_calibration = false;
break;
case MAV_CMD_PREFLIGHT_SET_SENSOR_OFFSETS:
if (AP_Math::is_equal(packet.param1,2.0f)) {
// save first compass's offsets
compass.set_and_save_offsets(0, packet.param2, packet.param3, packet.param4);
result = MAV_RESULT_ACCEPTED;
}
if (AP_Math::is_equal(packet.param1,5.0f)) {
// save secondary compass's offsets
compass.set_and_save_offsets(1, packet.param2, packet.param3, packet.param4);
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_COMPONENT_ARM_DISARM:
if (AP_Math::is_equal(packet.param1,1.0f)) {
// run pre_arm_checks and arm_checks and display failures
if (arm_motors(AP_Arming::MAVLINK)) {
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
} else if (AP_Math::is_zero(packet.param1)) {
if (disarm_motors()) {
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
} else {
result = MAV_RESULT_UNSUPPORTED;
}
break;
case MAV_CMD_DO_SET_MODE:
switch ((uint16_t)packet.param1) {
case MAV_MODE_MANUAL_ARMED:
case MAV_MODE_MANUAL_DISARMED:
set_mode(MANUAL);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_MODE_AUTO_ARMED:
case MAV_MODE_AUTO_DISARMED:
set_mode(AUTO);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_MODE_STABILIZE_DISARMED:
case MAV_MODE_STABILIZE_ARMED:
set_mode(FLY_BY_WIRE_A);
result = MAV_RESULT_ACCEPTED;
break;
default:
result = MAV_RESULT_UNSUPPORTED;
}
break;
case MAV_CMD_DO_SET_SERVO:
if (ServoRelayEvents.do_set_servo(packet.param1, packet.param2)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_REPEAT_SERVO:
if (ServoRelayEvents.do_repeat_servo(packet.param1, packet.param2, packet.param3, packet.param4*1000)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_SET_RELAY:
if (ServoRelayEvents.do_set_relay(packet.param1, packet.param2)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_REPEAT_RELAY:
if (ServoRelayEvents.do_repeat_relay(packet.param1, packet.param2, packet.param3*1000)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN:
if (AP_Math::is_equal(packet.param1,1.0f) || AP_Math::is_equal(packet.param1,3.0f)) {
// when packet.param1 == 3 we reboot to hold in bootloader
hal.scheduler->reboot(AP_Math::is_equal(packet.param1,3.0f));
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_LAND_START:
result = MAV_RESULT_FAILED;
// attempt to switch to next DO_LAND_START command in the mission
if (jump_to_landing_sequence()) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_GO_AROUND:
result = MAV_RESULT_FAILED;
//Not allowing go around at FLIGHT_LAND_FINAL stage on purpose --
//if plane is close to the ground a go around coudld be dangerous.
if (flight_stage == AP_SpdHgtControl::FLIGHT_LAND_APPROACH) {
//Just tell the autopilot we're done landing so it will
//proceed to the next mission item. If there is no next mission
//item the plane will head to home point and loiter.
auto_state.commanded_go_around = true;
result = MAV_RESULT_ACCEPTED;
gcs_send_text_P(SEVERITY_HIGH,PSTR("Go around command accepted."));
} else {
gcs_send_text_P(SEVERITY_HIGH,PSTR("Rejected go around command."));
}
break;
case MAV_CMD_DO_FENCE_ENABLE:
result = MAV_RESULT_ACCEPTED;
if (!geofence_present()) {
result = MAV_RESULT_FAILED;
} switch((uint16_t)packet.param1) {
case 0:
if (! geofence_set_enabled(false, GCS_TOGGLED)) {
result = MAV_RESULT_FAILED;
}
break;
case 1:
if (! geofence_set_enabled(true, GCS_TOGGLED)) {
result = MAV_RESULT_FAILED;
}
break;
default:
result = MAV_RESULT_FAILED;
break;
}
break;
case MAV_CMD_REQUEST_AUTOPILOT_CAPABILITIES: {
if (AP_Math::is_equal(packet.param1,1.0f)) {
gcs[chan-MAVLINK_COMM_0].send_autopilot_version();
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_SET_HOME:
// param1 : use current (1=use current location, 0=use specified location)
// param5 : latitude
// param6 : longitude
// param7 : altitude (absolute)
result = MAV_RESULT_FAILED; // assume failure
if (AP_Math::is_equal(packet.param1,1.0f)) {
init_home();
} else {
if (AP_Math::is_zero(packet.param5) && AP_Math::is_zero(packet.param6) && AP_Math::is_zero(packet.param7)) {
// don't allow the 0,0 position
break;
}
Location new_home_loc;
new_home_loc.lat = (int32_t)(packet.param5 * 1.0e7f);
new_home_loc.lng = (int32_t)(packet.param6 * 1.0e7f);
new_home_loc.alt = (int32_t)(packet.param7 * 100.0f);
ahrs.set_home(new_home_loc);
home_is_set = HOME_SET_NOT_LOCKED;
result = MAV_RESULT_ACCEPTED;
}
break;
}
default:
break;
}
mavlink_msg_command_ack_send_buf(
msg,
chan,
packet.command,
result);
break;
}
case MAVLINK_MSG_ID_SET_MODE:
{
handle_set_mode(msg, mavlink_set_mode);
break;
}
// GCS request the full list of commands, we return just the number and leave the GCS to then request each command individually
case MAVLINK_MSG_ID_MISSION_REQUEST_LIST:
{
handle_mission_request_list(mission, msg);
break;
}
// XXX read a WP from EEPROM and send it to the GCS
case MAVLINK_MSG_ID_MISSION_REQUEST:
{
handle_mission_request(mission, msg);
break;
}
case MAVLINK_MSG_ID_MISSION_ACK:
{
// nothing to do
break;
}
case MAVLINK_MSG_ID_PARAM_REQUEST_LIST:
{
// mark the firmware version in the tlog
send_text_P(SEVERITY_LOW, PSTR(FIRMWARE_STRING));
#if defined(PX4_GIT_VERSION) && defined(NUTTX_GIT_VERSION)
send_text_P(SEVERITY_LOW, PSTR("PX4: " PX4_GIT_VERSION " NuttX: " NUTTX_GIT_VERSION));
#endif
handle_param_request_list(msg);
break;
}
case MAVLINK_MSG_ID_PARAM_REQUEST_READ:
{
handle_param_request_read(msg);
break;
}
case MAVLINK_MSG_ID_MISSION_CLEAR_ALL:
{
handle_mission_clear_all(mission, msg);
break;
}
case MAVLINK_MSG_ID_MISSION_SET_CURRENT:
{
// disable cross-track when user asks for WP change, to
// prevent unexpected flight paths
auto_state.next_wp_no_crosstrack = true;
handle_mission_set_current(mission, msg);
if (control_mode == AUTO && mission.state() == AP_Mission::MISSION_STOPPED) {
mission.resume();
}
break;
}
// GCS provides the full number of commands it wishes to upload
// individual commands will then be sent from the GCS using the MAVLINK_MSG_ID_MISSION_ITEM message
case MAVLINK_MSG_ID_MISSION_COUNT:
{
handle_mission_count(mission, msg);
break;
}
case MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST:
{
handle_mission_write_partial_list(mission, msg);
break;
}
// GCS has sent us a command from GCS, store to EEPROM
case MAVLINK_MSG_ID_MISSION_ITEM:
{
handle_mission_item(msg, mission);
break;
}
#if GEOFENCE_ENABLED == ENABLED
// receive a fence point from GCS and store in EEPROM
case MAVLINK_MSG_ID_FENCE_POINT: {
mavlink_fence_point_t packet;
mavlink_msg_fence_point_decode(msg, &packet);
if (g.fence_action != FENCE_ACTION_NONE) {
send_text_P(SEVERITY_LOW,PSTR("fencing must be disabled"));
} else if (packet.count != g.fence_total) {
send_text_P(SEVERITY_LOW,PSTR("bad fence point"));
} else {
Vector2l point;
point.x = packet.lat*1.0e7f;
point.y = packet.lng*1.0e7f;
set_fence_point_with_index(point, packet.idx);
}
break;
}
// send a fence point to GCS
case MAVLINK_MSG_ID_FENCE_FETCH_POINT: {
mavlink_fence_fetch_point_t packet;
mavlink_msg_fence_fetch_point_decode(msg, &packet);
if (packet.idx >= g.fence_total) {
send_text_P(SEVERITY_LOW,PSTR("bad fence point"));
} else {
Vector2l point = get_fence_point_with_index(packet.idx);
mavlink_msg_fence_point_send_buf(msg, chan, msg->sysid, msg->compid, packet.idx, g.fence_total,
point.x*1.0e-7f, point.y*1.0e-7f);
}
break;
}
#endif // GEOFENCE_ENABLED
// receive a rally point from GCS and store in EEPROM
case MAVLINK_MSG_ID_RALLY_POINT: {
mavlink_rally_point_t packet;
mavlink_msg_rally_point_decode(msg, &packet);
if (packet.idx >= rally.get_rally_total() ||
packet.idx >= rally.get_rally_max()) {
send_text_P(SEVERITY_LOW,PSTR("bad rally point message ID"));
break;
}
if (packet.count != rally.get_rally_total()) {
send_text_P(SEVERITY_LOW,PSTR("bad rally point message count"));
break;
}
RallyLocation rally_point;
rally_point.lat = packet.lat;
rally_point.lng = packet.lng;
rally_point.alt = packet.alt;
rally_point.break_alt = packet.break_alt;
rally_point.land_dir = packet.land_dir;
rally_point.flags = packet.flags;
rally.set_rally_point_with_index(packet.idx, rally_point);
break;
}
//send a rally point to the GCS
case MAVLINK_MSG_ID_RALLY_FETCH_POINT: {
mavlink_rally_fetch_point_t packet;
mavlink_msg_rally_fetch_point_decode(msg, &packet);
if (packet.idx > rally.get_rally_total()) {
send_text_P(SEVERITY_LOW, PSTR("bad rally point index"));
break;
}
RallyLocation rally_point;
if (!rally.get_rally_point_with_index(packet.idx, rally_point)) {
send_text_P(SEVERITY_LOW, PSTR("failed to set rally point"));
break;
}
mavlink_msg_rally_point_send_buf(msg,
chan, msg->sysid, msg->compid, packet.idx,
rally.get_rally_total(), rally_point.lat, rally_point.lng,
rally_point.alt, rally_point.break_alt, rally_point.land_dir,
rally_point.flags);
break;
}
case MAVLINK_MSG_ID_PARAM_SET:
{
handle_param_set(msg, &DataFlash);
break;
}
case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE:
{
// allow override of RC channel values for HIL
// or for complete GCS control of switch position
// and RC PWM values.
if(msg->sysid != g.sysid_my_gcs) break; // Only accept control from our gcs
mavlink_rc_channels_override_t packet;
int16_t v[8];
mavlink_msg_rc_channels_override_decode(msg, &packet);
v[0] = packet.chan1_raw;
v[1] = packet.chan2_raw;
v[2] = packet.chan3_raw;
v[3] = packet.chan4_raw;
v[4] = packet.chan5_raw;
v[5] = packet.chan6_raw;
v[6] = packet.chan7_raw;
v[7] = packet.chan8_raw;
if (hal.rcin->set_overrides(v, 8)) {
failsafe.last_valid_rc_ms = hal.scheduler->millis();
}
// a RC override message is consiered to be a 'heartbeat' from
// the ground station for failsafe purposes
failsafe.last_heartbeat_ms = millis();
break;
}
case MAVLINK_MSG_ID_HEARTBEAT:
{
// We keep track of the last time we received a heartbeat from
// our GCS for failsafe purposes
if (msg->sysid != g.sysid_my_gcs) break;
failsafe.last_heartbeat_ms = millis();
break;
}
case MAVLINK_MSG_ID_HIL_STATE:
{
if (g.hil_mode != 1) {
break;
}
mavlink_hil_state_t packet;
mavlink_msg_hil_state_decode(msg, &packet);
last_hil_state = packet;
// set gps hil sensor
Location loc;
memset(&loc, 0, sizeof(loc));
loc.lat = packet.lat;
loc.lng = packet.lon;
loc.alt = packet.alt/10;
Vector3f vel(packet.vx, packet.vy, packet.vz);
vel *= 0.01f;
// setup airspeed pressure based on 3D speed, no wind
airspeed.setHIL(sq(vel.length()) / 2.0f + 2013);
gps.setHIL(0, AP_GPS::GPS_OK_FIX_3D,
packet.time_usec/1000,
loc, vel, 10, 0, true);
// rad/sec
Vector3f gyros;
gyros.x = packet.rollspeed;
gyros.y = packet.pitchspeed;
gyros.z = packet.yawspeed;
// m/s/s
Vector3f accels;
accels.x = packet.xacc * GRAVITY_MSS*0.001f;
accels.y = packet.yacc * GRAVITY_MSS*0.001f;
accels.z = packet.zacc * GRAVITY_MSS*0.001f;
ins.set_gyro(0, gyros);
ins.set_accel(0, accels);
barometer.setHIL(packet.alt*0.001f);
compass.setHIL(packet.roll, packet.pitch, packet.yaw);
// cope with DCM getting badly off due to HIL lag
if (g.hil_err_limit > 0 &&
(fabsf(packet.roll - ahrs.roll) > ToRad(g.hil_err_limit) ||
fabsf(packet.pitch - ahrs.pitch) > ToRad(g.hil_err_limit) ||
wrap_PI(fabsf(packet.yaw - ahrs.yaw)) > ToRad(g.hil_err_limit))) {
ahrs.reset_attitude(packet.roll, packet.pitch, packet.yaw);
}
break;
}
#if CAMERA == ENABLED
case MAVLINK_MSG_ID_DIGICAM_CONFIGURE:
{
break;
}
case MAVLINK_MSG_ID_DIGICAM_CONTROL:
{
camera.control_msg(msg);
log_picture();
break;
}
#endif // CAMERA == ENABLED
#if MOUNT == ENABLED
case MAVLINK_MSG_ID_MOUNT_CONFIGURE:
{
camera_mount.configure_msg(msg);
break;
}
case MAVLINK_MSG_ID_MOUNT_CONTROL:
{
camera_mount.control_msg(msg);
break;
}
#endif // MOUNT == ENABLED
case MAVLINK_MSG_ID_RADIO:
case MAVLINK_MSG_ID_RADIO_STATUS:
{
handle_radio_status(msg, DataFlash, should_log(MASK_LOG_PM));
break;
}
case MAVLINK_MSG_ID_LOG_REQUEST_DATA:
case MAVLINK_MSG_ID_LOG_ERASE:
in_log_download = true;
// fallthru
case MAVLINK_MSG_ID_LOG_REQUEST_LIST:
if (!in_mavlink_delay) {
handle_log_message(msg, DataFlash);
}
break;
case MAVLINK_MSG_ID_LOG_REQUEST_END:
in_log_download = false;
if (!in_mavlink_delay) {
handle_log_message(msg, DataFlash);
}
break;
#if HAL_CPU_CLASS > HAL_CPU_CLASS_16
case MAVLINK_MSG_ID_SERIAL_CONTROL:
handle_serial_control(msg, gps);
break;
case MAVLINK_MSG_ID_GPS_INJECT_DATA:
handle_gps_inject(msg, gps);
break;
#endif
case MAVLINK_MSG_ID_TERRAIN_DATA:
case MAVLINK_MSG_ID_TERRAIN_CHECK:
#if AP_TERRAIN_AVAILABLE
terrain.handle_data(chan, msg);
#endif
break;
case MAVLINK_MSG_ID_AUTOPILOT_VERSION_REQUEST:
gcs[chan-MAVLINK_COMM_0].send_autopilot_version();
break;
} // end switch
} // end handle mavlink
/*
* a delay() callback that processes MAVLink packets. We set this as the
* callback in long running library initialisation routines to allow
* MAVLink to process packets while waiting for the initialisation to
* complete
*/
static void mavlink_delay_cb()
{
static uint32_t last_1hz, last_50hz, last_5s;
if (!gcs[0].initialised || in_mavlink_delay) return;
in_mavlink_delay = true;
uint32_t tnow = millis();
if (tnow - last_1hz > 1000) {
last_1hz = tnow;
gcs_send_message(MSG_HEARTBEAT);
gcs_send_message(MSG_EXTENDED_STATUS1);
}
if (tnow - last_50hz > 20) {
last_50hz = tnow;
gcs_update();
gcs_data_stream_send();
notify.update();
}
if (tnow - last_5s > 5000) {
last_5s = tnow;
gcs_send_text_P(SEVERITY_LOW, PSTR("Initialising APM..."));
}
check_usb_mux();
in_mavlink_delay = false;
}
/*
* send a message on both GCS links
*/
static void gcs_send_message(enum ap_message id)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].send_message(id);
}
}
}
/*
* send data streams in the given rate range on both links
*/
static void gcs_data_stream_send(void)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].data_stream_send();
}
}
}
/*
* look for incoming commands on the GCS links
*/
static void gcs_update(void)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
#if CLI_ENABLED == ENABLED
gcs[i].update(g.cli_enabled==1?run_cli:NULL);
#else
gcs[i].update(NULL);
#endif
}
}
}
static void gcs_send_text_P(gcs_severity severity, const prog_char_t *str)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].send_text_P(severity, str);
}
}
#if LOGGING_ENABLED == ENABLED
DataFlash.Log_Write_Message_P(str);
#endif
}
/*
* send a low priority formatted message to the GCS
* only one fits in the queue, so if you send more than one before the
* last one gets into the serial buffer then the old one will be lost
*/
void gcs_send_text_fmt(const prog_char_t *fmt, ...)
{
va_list arg_list;
gcs[0].pending_status.severity = (uint8_t)SEVERITY_LOW;
va_start(arg_list, fmt);
hal.util->vsnprintf_P((char *)gcs[0].pending_status.text,
sizeof(gcs[0].pending_status.text), fmt, arg_list);
va_end(arg_list);
#if LOGGING_ENABLED == ENABLED
DataFlash.Log_Write_Message(gcs[0].pending_status.text);
#endif
gcs[0].send_message(MSG_STATUSTEXT);
for (uint8_t i=1; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].pending_status = gcs[0].pending_status;
gcs[i].send_message(MSG_STATUSTEXT);
}
}
}
/*
send airspeed calibration data
*/
static void gcs_send_airspeed_calibration(const Vector3f &vg)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
if (comm_get_txspace((mavlink_channel_t)i) - MAVLINK_NUM_NON_PAYLOAD_BYTES >=
MAVLINK_MSG_ID_AIRSPEED_AUTOCAL_LEN) {
airspeed.log_mavlink_send((mavlink_channel_t)i, vg);
}
}
}
}
/**
retry any deferred messages
*/
static void gcs_retry_deferred(void)
{
gcs_send_message(MSG_RETRY_DEFERRED);
}