ardupilot/libraries/AP_Math/vector2.h

197 lines
4.2 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
// Copyright 2010 Michael Smith, all rights reserved.
// This library is free software; you can redistribute it and / or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// Derived closely from:
/****************************************
* 2D Vector Classes
* By Bill Perone (billperone@yahoo.com)
* Original: 9-16-2002
* Revised: 19-11-2003
* 18-12-2003
* 06-06-2004
*
* © 2003, This code is provided "as is" and you can use it freely as long as
* credit is given to Bill Perone in the application it is used in
****************************************/
#ifndef VECTOR2_H
#define VECTOR2_H
#include <math.h>
template <typename T>
struct Vector2
{
T x, y;
// trivial ctor
Vector2<T>() {
x = y = 0;
}
// setting ctor
Vector2<T>(const T x0, const T y0) : x(x0), y(y0) {
}
// function call operator
void operator ()(const T x0, const T y0)
{
x= x0; y= y0;
}
// test for equality
bool operator==(const Vector2<T> &v)
{
return (x==v.x && y==v.y);
}
// test for inequality
bool operator!=(const Vector2<T> &v)
{
return (x!=v.x || y!=v.y);
}
// negation
Vector2<T> operator -(void) const
{
return Vector2<T>(-x, -y);
}
// addition
Vector2<T> operator +(const Vector2<T> &v) const
{
return Vector2<T>(x+v.x, y+v.y);
}
// subtraction
Vector2<T> operator -(const Vector2<T> &v) const
{
return Vector2<T>(x-v.x, y-v.y);
}
// uniform scaling
Vector2<T> operator *(const T num) const
{
Vector2<T> temp(*this);
return temp*=num;
}
// uniform scaling
Vector2<T> operator /(const T num) const
{
Vector2<T> temp(*this);
return temp/=num;
}
// addition
Vector2<T> &operator +=(const Vector2<T> &v)
{
x+=v.x; y+=v.y;
return *this;
}
// subtraction
Vector2<T> &operator -=(const Vector2<T> &v)
{
x-=v.x; y-=v.y;
return *this;
}
// uniform scaling
Vector2<T> &operator *=(const T num)
{
x*=num; y*=num;
return *this;
}
// uniform scaling
Vector2<T> &operator /=(const T num)
{
x/=num; y/=num;
return *this;
}
// dot product
T operator *(const Vector2<T> &v) const
{
return x*v.x + y*v.y;
}
// gets the length of this vector squared
T length_squared() const
{
return (T)(*this * *this);
}
// gets the length of this vector
T length() const
{
return (T)sqrt(*this * *this);
}
// normalizes this vector
void normalize()
{
*this/=length();
}
// returns the normalized vector
Vector2<T> normalized() const
{
return *this/length();
}
// reflects this vector about n
void reflect(const Vector2<T> &n)
{
Vector2<T> orig(*this);
project(n);
*this= *this*2 - orig;
}
// projects this vector onto v
void project(const Vector2<T> &v)
{
*this= v * (*this * v)/(v*v);
}
// returns this vector projected onto v
Vector2<T> projected(const Vector2<T> &v)
{
return v * (*this * v)/(v*v);
}
// computes the angle between 2 arbitrary vectors
T angle(const Vector2<T> &v1, const Vector2<T> &v2)
{
return (T)acos((v1*v2) / (v1.length()*v2.length()));
}
// computes the angle between this vector and another vector
T angle(const Vector2<T> &v2)
{
return (T)acos(((*this)*v2) / (this->length()*v2.length()));
}
// computes the angle between 2 normalized arbitrary vectors
T angle_normalized(const Vector2<T> &v1, const Vector2<T> &v2)
{
return (T)acos(v1*v2);
}
};
typedef Vector2<int16_t> Vector2i;
typedef Vector2<uint16_t> Vector2ui;
typedef Vector2<int32_t> Vector2l;
typedef Vector2<uint32_t> Vector2ul;
typedef Vector2<float> Vector2f;
#endif // VECTOR2_H