ardupilot/libraries/AP_Motors/AP_MotorsHeli_RSC.cpp
2015-10-10 15:11:35 +09:00

127 lines
4.1 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include <AP_HAL/AP_HAL.h>
#include "AP_MotorsHeli_RSC.h"
extern const AP_HAL::HAL& hal;
// recalc_scalers - recalculates various scalers used. Should be called at about 1hz to allow users to see effect of changing parameters
void AP_MotorsHeli_RSC::recalc_scalers()
{
// recalculate rotor ramp up increment
if (_ramp_time <= 0) {
_ramp_time = 1;
}
_ramp_increment = 1000.0f / (_ramp_time * _loop_rate);
// recalculate rotor runup increment
if (_runup_time <= 0 ) {
_runup_time = 1;
}
if (_runup_time < _ramp_time) {
_runup_time = _ramp_time;
}
_runup_increment = 1000.0f / (_runup_time * _loop_rate);
}
// output - update value to send to ESC/Servo
void AP_MotorsHeli_RSC::output(uint8_t state)
{
switch (state){
case ROTOR_CONTROL_STOP:
_control_speed = 0; // ramp input to zero
_control_out = 0; // force ramp output to zero
_estimated_speed = 0; // force speed estimate to zero
break;
case ROTOR_CONTROL_IDLE:
_control_speed = _idle_speed; // set control speed to idle speed
if (_control_out < _idle_speed){
_control_out = _idle_speed; // if control output is less than idle speed, force ramp function to jump to idle speed
}
break;
case ROTOR_CONTROL_ACTIVE:
_control_speed = _desired_speed; // set control speed to desired speed
break;
}
// run speed ramp function to slew output smoothly, also updates estimated speed
speed_ramp(_control_speed);
// output to rsc servo
write_rsc(_control_out);
}
// speed_ramp - ramps speed towards target, result put in _control_out
void AP_MotorsHeli_RSC::speed_ramp(int16_t speed_target)
{
// range check speed_target
speed_target = constrain_int16(speed_target,0,1000);
// ramp output upwards towards target
if (_control_out < speed_target) {
// allow control output to jump to estimated speed
if (_control_out < _estimated_speed) {
_control_out = _estimated_speed;
}
// ramp up slowly to target
_control_out += _ramp_increment;
if (_control_out > speed_target) {
_control_out = speed_target;
}
}else{
// ramping down happens instantly
_control_out = speed_target;
}
// ramp speed estimate towards control out
if (_estimated_speed < _control_out) {
_estimated_speed += _runup_increment;
if (_estimated_speed > _control_out) {
_estimated_speed = _control_out;
}
}else{
_estimated_speed -= _runup_increment;
if (_estimated_speed < _control_out) {
_estimated_speed = _control_out;
}
}
// set runup complete flag
if (!_runup_complete && speed_target > 0 && _estimated_speed >= speed_target) {
_runup_complete = true;
}
if (_runup_complete && _estimated_speed <= _critical_speed) {
_runup_complete = false;
}
}
// write_rsc - outputs pwm onto output rsc channel
// servo_out parameter is of the range 0 ~ 1000
void AP_MotorsHeli_RSC::write_rsc(int16_t servo_out)
{
_servo_output.servo_out = servo_out;
_servo_output.calc_pwm();
hal.rcout->write(_servo_output_channel, _servo_output.radio_out);
}