ardupilot/ArduCopterMega/Mavlink_Common.h

281 lines
5.6 KiB
C

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#ifndef Mavlink_Common_H
#define Mavlink_Common_H
#if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK || GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK
uint16_t system_type = MAV_FIXED_WING;
byte mavdelay = 0;
// what does this do?
static uint8_t mavlink_check_target(uint8_t sysid, uint8_t compid)
{
if (sysid != mavlink_system.sysid){
return 1;
}else if(compid != mavlink_system.compid){
gcs.send_text_P(SEVERITY_LOW,PSTR("component id mismatch"));
return 0; // XXX currently not receiving correct compid from gcs
}else{
return 0; // no error
}
}
void mavlink_send_message(mavlink_channel_t chan, uint8_t id, uint32_t param, uint16_t packet_drops)
{
uint64_t timeStamp = micros();
switch(id) {
case MSG_HEARTBEAT:
mavlink_msg_heartbeat_send(
chan,
system_type,
MAV_AUTOPILOT_ARDUPILOTMEGA);
break;
case MSG_EXTENDED_STATUS:
{
uint8_t mode = MAV_MODE_UNINIT;
uint8_t nav_mode = MAV_NAV_VECTOR;
switch(control_mode) {
case ACRO:
mode = MAV_MODE_MANUAL;
break;
case STABILIZE:
mode = MAV_MODE_GUIDED;
break;
case FBW:
mode = MAV_MODE_TEST1;
break;
case ALT_HOLD:
mode = MAV_MODE_TEST2;
break;
case LOITER:
mode = MAV_MODE_AUTO;
nav_mode = MAV_NAV_HOLD;
break;
case AUTO:
mode = MAV_MODE_AUTO;
nav_mode = MAV_NAV_WAYPOINT;
break;
case RTL:
mode = MAV_MODE_AUTO;
nav_mode = MAV_NAV_RETURNING;
break;
}
uint8_t status = MAV_STATE_ACTIVE;
uint8_t motor_block = false;
mavlink_msg_sys_status_send(
chan,
mode,
nav_mode,
status,
load * 1000,
battery_voltage1 * 1000,
motor_block,
packet_drops);
break;
}
case MSG_ATTITUDE:
{
Vector3f omega = dcm.get_gyro();
mavlink_msg_attitude_send(
chan,
timeStamp,
dcm.roll,
dcm.pitch,
dcm.yaw,
omega.x,
omega.y,
omega.z);
break;
}
case MSG_LOCATION:
{
Matrix3f rot = dcm.get_dcm_matrix(); // neglecting angle of attack for now
mavlink_msg_global_position_int_send(
chan,
current_loc.lat,
current_loc.lng,
current_loc.alt * 10,
g_gps->ground_speed * rot.a.x,
g_gps->ground_speed * rot.b.x,
g_gps->ground_speed * rot.c.x);
break;
}
case MSG_LOCAL_LOCATION:
{
Matrix3f rot = dcm.get_dcm_matrix(); // neglecting angle of attack for now
mavlink_msg_local_position_send(
chan,
timeStamp,
ToRad((current_loc.lat - home.lat) / 1.0e7) * radius_of_earth,
ToRad((current_loc.lng - home.lng) / 1.0e7) * radius_of_earth * cos(ToRad(home.lat / 1.0e7)),
(current_loc.alt - home.alt) / 1.0e2,
g_gps->ground_speed / 1.0e2 * rot.a.x,
g_gps->ground_speed / 1.0e2 * rot.b.x,
g_gps->ground_speed / 1.0e2 * rot.c.x);
break;
}
case MSG_GPS_RAW:
{
mavlink_msg_gps_raw_send(
chan,
timeStamp,
g_gps->status(),
g_gps->latitude / 1.0e7,
g_gps->longitude / 1.0e7,
g_gps->altitude / 100.0,
g_gps->hdop,
0.0,
g_gps->ground_speed / 100.0,
g_gps->ground_course / 100.0);
break;
}
case MSG_SERVO_OUT:
{
uint8_t rssi = 1;
// normalized values scaled to -10000 to 10000
// This is used for HIL. Do not change without discussing with HIL maintainers
mavlink_msg_rc_channels_scaled_send(
chan,
g.rc_1.norm_output(),
g.rc_2.norm_output(),
g.rc_3.norm_output(),
g.rc_4.norm_output(),
0,
0,
0,
0,
rssi);
break;
}
case MSG_RADIO_IN:
{
uint8_t rssi = 1;
mavlink_msg_rc_channels_raw_send(
chan,
g.rc_1.radio_in,
g.rc_2.radio_in,
g.rc_3.radio_in,
g.rc_4.radio_in,
g.rc_5.radio_in,
g.rc_6.radio_in,
g.rc_7.radio_in,
g.rc_8.radio_in,
rssi);
break;
}
case MSG_RADIO_OUT:
{
mavlink_msg_servo_output_raw_send(
chan,
motor_out[0],
motor_out[1],
motor_out[2],
motor_out[3],
0,
0,
0,
0);
break;
}
case MSG_VFR_HUD:
{
mavlink_msg_vfr_hud_send(
chan,
(float)airspeed / 100.0,
(float)g_gps->ground_speed / 100.0,
dcm.yaw_sensor,
current_loc.alt / 100.0,
climb_rate,
nav_throttle);
break;
}
#if HIL_MODE != HIL_MODE_ATTITUDE
case MSG_RAW_IMU:
{
Vector3f accel = imu.get_accel();
Vector3f gyro = imu.get_gyro();
//Serial.printf_P(PSTR("sending accel: %f %f %f\n"), accel.x, accel.y, accel.z);
//Serial.printf_P(PSTR("sending gyro: %f %f %f\n"), gyro.x, gyro.y, gyro.z);
mavlink_msg_raw_imu_send(
chan,
timeStamp,
accel.x * 1000.0 / gravity,
accel.y * 1000.0 / gravity,
accel.z * 1000.0 / gravity,
gyro.x * 1000.0,
gyro.y * 1000.0,
gyro.z * 1000.0,
compass.mag_x,
compass.mag_y,
compass.mag_z);
mavlink_msg_raw_pressure_send(
chan,
timeStamp,
adc.Ch(AIRSPEED_CH),
barometer.RawPress,
0,
0);
break;
}
#endif // HIL_PROTOCOL != HIL_PROTOCOL_ATTITUDE
case MSG_GPS_STATUS:
{
mavlink_msg_gps_status_send(
chan,
g_gps->num_sats,
NULL,
NULL,
NULL,
NULL,
NULL);
break;
}
case MSG_CURRENT_WAYPOINT:
{
mavlink_msg_waypoint_current_send(
chan,
g.waypoint_index);
break;
}
defualt:
break;
}
}
void mavlink_send_text(mavlink_channel_t chan, uint8_t severity, const char *str)
{
mavlink_msg_statustext_send(
chan,
severity,
(const int8_t*) str);
}
void mavlink_acknowledge(mavlink_channel_t chan, uint8_t id, uint8_t sum1, uint8_t sum2)
{
}
#endif // mavlink in use
#endif // inclusion guard