ardupilot/AntennaTracker/system.pde

242 lines
6.1 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
// mission storage
static const StorageAccess wp_storage(StorageManager::StorageMission);
static void init_tracker()
{
hal.uartA->begin(SERIAL0_BAUD, 128, SERIAL_BUFSIZE);
// gps port
hal.uartB->begin(38400, 256, 16);
cliSerial->printf_P(PSTR("\n\nInit " THISFIRMWARE
"\n\nFree RAM: %u\n"),
hal.util->available_memory());
// Check the EEPROM format version before loading any parameters from EEPROM
load_parameters();
BoardConfig.init();
// reset the uartA baud rate after parameter load
hal.uartA->begin(map_baudrate(g.serial0_baud));
// init baro before we start the GCS, so that the CLI baro test works
barometer.init();
// init the GCS
gcs[0].init(hal.uartA);
// set up snooping on other mavlink destinations
gcs[0].set_snoop(mavlink_snoop);
// Register mavlink_delay_cb, which will run anytime you have
// more than 5ms remaining in your call to hal.scheduler->delay
hal.scheduler->register_delay_callback(mavlink_delay_cb, 5);
// we start by assuming USB connected, as we initialed the serial
// port with SERIAL0_BAUD. check_usb_mux() fixes this if need be.
usb_connected = true;
check_usb_mux();
// we have a 2nd serial port for telemetry
hal.uartC->begin(map_baudrate(g.serial1_baud), 128, SERIAL1_BUFSIZE);
gcs[1].setup_uart(hal.uartC, map_baudrate(g.serial1_baud), 128, SERIAL1_BUFSIZE);
mavlink_system.sysid = g.sysid_this_mav;
if (g.compass_enabled==true) {
if (!compass.init() || !compass.read()) {
cliSerial->println_P(PSTR("Compass initialisation failed!"));
g.compass_enabled = false;
} else {
ahrs.set_compass(&compass);
}
}
// GPS Initialization
gps.init(NULL);
ahrs.init();
ahrs.set_fly_forward(false);
ins.init(AP_InertialSensor::WARM_START, ins_sample_rate);
ahrs.reset();
init_barometer();
hal.uartA->set_blocking_writes(false);
hal.uartB->set_blocking_writes(false);
hal.uartC->set_blocking_writes(false);
// initialise servos
init_servos();
// use given start positions - useful for indoor testing, and
// while waiting for GPS lock
current_loc.lat = g.start_latitude * 1.0e7f;
current_loc.lng = g.start_longitude * 1.0e7f;
// see if EEPROM has a default location as well
if (current_loc.lat == 0 && current_loc.lng == 0) {
get_home_eeprom(current_loc);
}
gcs_send_text_P(SEVERITY_LOW,PSTR("\nReady to track."));
hal.scheduler->delay(1000); // Why????
set_mode(AUTO); // tracking
if (g.startup_delay > 0) {
// arm servos with trim value to allow them to start up (required
// for some servos)
prepare_servos();
}
// calibrate pressure on startup by default
nav_status.need_altitude_calibration = true;
}
// Level the tracker by calibrating the INS
// Requires that the tracker be physically 'level' and horizontal
static void calibrate_ins()
{
gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Beginning INS calibration; do not move tracker"));
ahrs.init();
ins.init(AP_InertialSensor::COLD_START, ins_sample_rate);
ins.init_accel();
ahrs.set_trim(Vector3f(0, 0, 0));
ahrs.reset();
init_barometer();
}
// updates the status of the notify objects
// should be called at 50hz
static void update_notify()
{
notify.update();
}
/*
fetch HOME from EEPROM
*/
static bool get_home_eeprom(struct Location &loc)
{
// Find out proper location in memory by using the start_byte position + the index
// --------------------------------------------------------------------------------
if (g.command_total.get() == 0) {
return false;
}
// read WP position
loc.options = wp_storage.read_byte(0);
loc.alt = wp_storage.read_uint32(1);
loc.lat = wp_storage.read_uint32(5);
loc.lng = wp_storage.read_uint32(9);
return true;
}
static void set_home_eeprom(struct Location temp)
{
wp_storage.write_byte(0, temp.options);
wp_storage.write_uint32(1, temp.alt);
wp_storage.write_uint32(5, temp.lat);
wp_storage.write_uint32(9, temp.lng);
// Now have a home location in EEPROM
g.command_total.set_and_save(1); // At most 1 entry for HOME
}
static void set_home(struct Location temp)
{
set_home_eeprom(temp);
current_loc = temp;
}
static void arm_servos()
{
channel_yaw.enable_out();
channel_pitch.enable_out();
}
static void disarm_servos()
{
channel_yaw.disable_out();
channel_pitch.disable_out();
}
/*
setup servos to trim value after initialising
*/
static void prepare_servos()
{
start_time_ms = hal.scheduler->millis();
channel_yaw.radio_out = channel_yaw.radio_trim;
channel_pitch.radio_out = channel_pitch.radio_trim;
channel_yaw.output();
channel_pitch.output();
}
static void set_mode(enum ControlMode mode)
{
if(control_mode == mode) {
// don't switch modes if we are already in the correct mode.
return;
}
control_mode = mode;
switch (control_mode) {
case AUTO:
case MANUAL:
case SCAN:
arm_servos();
break;
case STOP:
case INITIALISING:
disarm_servos();
break;
}
}
/*
set_mode() wrapper for MAVLink SET_MODE
*/
static bool mavlink_set_mode(uint8_t mode)
{
switch (mode) {
case AUTO:
case MANUAL:
case SCAN:
case STOP:
set_mode((enum ControlMode)mode);
return true;
}
return false;
}
static void check_usb_mux(void)
{
bool usb_check = hal.gpio->usb_connected();
if (usb_check == usb_connected) {
return;
}
// the user has switched to/from the telemetry port
usb_connected = usb_check;
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2
// the APM2 has a MUX setup where the first serial port switches
// between USB and a TTL serial connection. When on USB we use
// SERIAL0_BAUD, but when connected as a TTL serial port we run it
// at SERIAL1_BAUD.
if (usb_connected) {
hal.uartA->begin(SERIAL0_BAUD);
} else {
hal.uartA->begin(map_baudrate(g.serial1_baud));
}
#endif
}