ardupilot/ArduCopter/flight_mode.pde
Randy Mackay d579325e2a Copter: add get_angle_targets_for_reporting
This returns the current earth frame roll, pitch and yaw targets which
can depend upon the flight mode
2014-02-15 05:27:47 +11:00

291 lines
6.9 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
* flight.pde - high level calls to set and update flight modes
* logic for individual flight modes is in control_acro.pde, control_stabilize.pde, etc
*/
// set_mode - change flight mode and perform any necessary initialisation
// optional force parameter used to force the flight mode change (used only first time mode is set)
// returns true if mode was succesfully set
// ACRO, STABILIZE, ALTHOLD, LAND, DRIFT and SPORT can always be set successfully but the return state of other flight modes should be checked and the caller should deal with failures appropriately
static bool set_mode(uint8_t mode)
{
// boolean to record if flight mode could be set
bool success = false;
bool ignore_checks = !motors.armed(); // allow switching to any mode if disarmed. We rely on the arming check to perform
// return immediately if we are already in the desired mode
if (mode == control_mode) {
return true;
}
switch(mode) {
case ACRO:
#if FRAME_CONFIG == HELI_FRAME
success = heli_acro_init(ignore_checks);
#else
success = acro_init(ignore_checks);
#endif
break;
case STABILIZE:
#if FRAME_CONFIG == HELI_FRAME
success = heli_stabilize_init(ignore_checks);
#else
success = stabilize_init(ignore_checks);
#endif
break;
case ALT_HOLD:
success = althold_init(ignore_checks);
break;
case AUTO:
success = auto_init(ignore_checks);
break;
case CIRCLE:
success = circle_init(ignore_checks);
break;
case LOITER:
success = loiter_init(ignore_checks);
break;
case GUIDED:
success = guided_init(ignore_checks);
break;
case LAND:
success = land_init(ignore_checks);
break;
case RTL:
success = rtl_init(ignore_checks);
break;
case OF_LOITER:
success = ofloiter_init(ignore_checks);
break;
case DRIFT:
success = drift_init(ignore_checks);
break;
case SPORT:
success = sport_init(ignore_checks);
break;
case FLIP:
success = flip_init(ignore_checks);
break;
#if AUTOTUNE_ENABLED == ENABLED
case AUTOTUNE:
success = autotune_init(ignore_checks);
break;
#endif
default:
success = false;
break;
}
// update flight mode
if (success) {
// perform any cleanup required by previous flight mode
exit_mode(control_mode);
control_mode = mode;
Log_Write_Mode(control_mode);
}else{
// Log error that we failed to enter desired flight mode
Log_Write_Error(ERROR_SUBSYSTEM_FLIGHT_MODE,mode);
}
// return success or failure
return success;
}
// update_flight_mode - calls the appropriate attitude controllers based on flight mode
// called at 100hz or more
static void update_flight_mode()
{
switch (control_mode) {
case ACRO:
#if FRAME_CONFIG == HELI_FRAME
heli_acro_run();
#else
acro_run();
#endif
break;
case STABILIZE:
#if FRAME_CONFIG == HELI_FRAME
heli_stabilize_run();
#else
stabilize_run();
#endif
break;
case ALT_HOLD:
althold_run();
break;
case AUTO:
auto_run();
break;
case CIRCLE:
circle_run();
break;
case LOITER:
loiter_run();
break;
case GUIDED:
guided_run();
break;
case LAND:
land_run();
break;
case RTL:
rtl_run();
break;
case OF_LOITER:
ofloiter_run();
break;
case DRIFT:
drift_run();
break;
case SPORT:
sport_run();
break;
case FLIP:
flip_run();
break;
#if AUTOTUNE_ENABLED == ENABLED
case AUTOTUNE:
autotune_run();
break;
#endif
}
}
// exit_mode - high level call to organise cleanup as a flight mode is exited
static void exit_mode(uint8_t old_control_mode)
{
#if AUTOTUNE_ENABLED == ENABLED
if (old_control_mode == AUTOTUNE) {
autotune_stop();
}
#endif
}
// returns true or false whether mode requires GPS
static bool mode_requires_GPS(uint8_t mode) {
switch(mode) {
case AUTO:
case GUIDED:
case LOITER:
case RTL:
case CIRCLE:
case DRIFT:
return true;
default:
return false;
}
return false;
}
// manual_flight_mode - returns true if flight mode is completely manual (i.e. roll, pitch and yaw controlled by pilot)
static bool manual_flight_mode(uint8_t mode) {
switch(mode) {
case ACRO:
case STABILIZE:
case DRIFT:
case SPORT:
return true;
default:
return false;
}
return false;
}
//
// print_flight_mode - prints flight mode to serial port.
//
static void
print_flight_mode(AP_HAL::BetterStream *port, uint8_t mode)
{
switch (mode) {
case STABILIZE:
port->print_P(PSTR("STABILIZE"));
break;
case ACRO:
port->print_P(PSTR("ACRO"));
break;
case ALT_HOLD:
port->print_P(PSTR("ALT_HOLD"));
break;
case AUTO:
port->print_P(PSTR("AUTO"));
break;
case GUIDED:
port->print_P(PSTR("GUIDED"));
break;
case LOITER:
port->print_P(PSTR("LOITER"));
break;
case RTL:
port->print_P(PSTR("RTL"));
break;
case CIRCLE:
port->print_P(PSTR("CIRCLE"));
break;
case LAND:
port->print_P(PSTR("LAND"));
break;
case OF_LOITER:
port->print_P(PSTR("OF_LOITER"));
break;
case DRIFT:
port->print_P(PSTR("DRIFT"));
break;
case SPORT:
port->print_P(PSTR("SPORT"));
break;
case FLIP:
port->print_P(PSTR("FLIP"));
break;
case AUTOTUNE:
port->print_P(PSTR("AUTOTUNE"));
break;
default:
port->printf_P(PSTR("Mode(%u)"), (unsigned)mode);
break;
}
}
// get_angle_targets_for_reporting() - returns 3d vector of roll, pitch and yaw target angles for logging and reporting to GCS
static void get_angle_targets_for_reporting(Vector3f& targets)
{
if (control_mode == ACRO) {
targets.x = 0;
targets.y = 0;
targets.y = 0;
}else{
targets = attitude_control.angle_ef_targets();
}
}