mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-07 00:18:29 -04:00
157 lines
5.4 KiB
C++
157 lines
5.4 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "AP_RangeFinder_LightWareSerial.h"
|
|
|
|
#if AP_RANGEFINDER_LIGHTWARE_SERIAL_ENABLED
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include <ctype.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
#define LIGHTWARE_DIST_MAX_CM 10000
|
|
#define LIGHTWARE_OUT_OF_RANGE_ADD_CM 100
|
|
|
|
// read - return last value measured by sensor
|
|
bool AP_RangeFinder_LightWareSerial::get_reading(float &reading_m)
|
|
{
|
|
if (uart == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
float sum = 0; // sum of all readings taken
|
|
uint16_t valid_count = 0; // number of valid readings
|
|
uint16_t invalid_count = 0; // number of invalid readings
|
|
|
|
// max distance the sensor can reliably measure - read from parameters
|
|
const int16_t distance_cm_max = max_distance_cm();
|
|
|
|
// read any available lines from the lidar
|
|
for (auto i=0; i<8192; i++) {
|
|
uint8_t c;
|
|
if (!uart->read(c)) {
|
|
break;
|
|
}
|
|
// use legacy protocol
|
|
if (protocol_state == ProtocolState::UNKNOWN || protocol_state == ProtocolState::LEGACY) {
|
|
if (c == '\r') {
|
|
linebuf[linebuf_len] = 0;
|
|
const float dist = strtof(linebuf, nullptr);
|
|
if (!is_negative(dist) && !is_lost_signal_distance(dist * 100, distance_cm_max)) {
|
|
sum += dist;
|
|
valid_count++;
|
|
// if still determining protocol update legacy valid count
|
|
if (protocol_state == ProtocolState::UNKNOWN) {
|
|
legacy_valid_count++;
|
|
}
|
|
} else {
|
|
invalid_count++;
|
|
}
|
|
linebuf_len = 0;
|
|
} else if (isdigit(c) || c == '.' || c == '-') {
|
|
linebuf[linebuf_len++] = c;
|
|
if (linebuf_len == sizeof(linebuf)) {
|
|
// too long, discard the line
|
|
linebuf_len = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// use binary protocol
|
|
if (protocol_state == ProtocolState::UNKNOWN || protocol_state == ProtocolState::BINARY) {
|
|
bool msb_set = BIT_IS_SET(c, 7);
|
|
if (msb_set) {
|
|
// received the high byte
|
|
high_byte = c;
|
|
high_byte_received = true;
|
|
} else {
|
|
// received the low byte which should be second
|
|
if (high_byte_received) {
|
|
const int16_t dist = (high_byte & 0x7f) << 7 | (c & 0x7f);
|
|
if (dist >= 0 && !is_lost_signal_distance(dist, distance_cm_max)) {
|
|
sum += dist * 0.01f;
|
|
valid_count++;
|
|
// if still determining protocol update binary valid count
|
|
if (protocol_state == ProtocolState::UNKNOWN) {
|
|
binary_valid_count++;
|
|
}
|
|
} else {
|
|
invalid_count++;
|
|
}
|
|
}
|
|
high_byte_received = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// protocol set after 10 successful reads
|
|
if (protocol_state == ProtocolState::UNKNOWN) {
|
|
if (binary_valid_count > 10) {
|
|
protocol_state = ProtocolState::BINARY;
|
|
} else if (legacy_valid_count > 10) {
|
|
protocol_state = ProtocolState::LEGACY;
|
|
}
|
|
}
|
|
|
|
uint32_t now = AP_HAL::millis();
|
|
if (last_init_ms == 0 ||
|
|
(now - last_init_ms > 1000 &&
|
|
now - state.last_reading_ms > 1000)) {
|
|
// send enough serial transitions to trigger LW20 into serial
|
|
// mode. It starts in dual I2C/serial mode, and wants to see
|
|
// enough transitions to switch into serial mode.
|
|
uart->write("www\r\n");
|
|
last_init_ms = now;
|
|
} else {
|
|
uart->write('d');
|
|
}
|
|
|
|
// return average of all valid readings
|
|
if (valid_count > 0) {
|
|
reading_m = sum / valid_count;
|
|
no_signal = false;
|
|
return true;
|
|
}
|
|
|
|
// all readings were invalid so return out-of-range-high value
|
|
if (invalid_count > 0) {
|
|
reading_m = MIN(MAX(LIGHTWARE_DIST_MAX_CM, distance_cm_max + LIGHTWARE_OUT_OF_RANGE_ADD_CM), UINT16_MAX) * 0.01f;
|
|
no_signal = true;
|
|
return true;
|
|
}
|
|
|
|
// no readings so return false
|
|
return false;
|
|
}
|
|
|
|
// check to see if distance returned by the LiDAR is a known lost-signal distance flag
|
|
bool AP_RangeFinder_LightWareSerial::is_lost_signal_distance(int16_t distance_cm, int16_t distance_cm_max)
|
|
{
|
|
if (distance_cm < distance_cm_max + LIGHTWARE_OUT_OF_RANGE_ADD_CM) {
|
|
// in-range
|
|
return false;
|
|
}
|
|
const int16_t bad_distances[] { 13000, 16000, 23000, 25000 };
|
|
for (const auto bad_distance_cm : bad_distances) {
|
|
if (distance_cm == bad_distance_cm) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#endif
|