ardupilot/ArduCopter/control_hybrid.pde

615 lines
33 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
* control_hybrid.pde - init and run calls for hybrid flight mode
* hybrid tries to improve upon regular loiter by mixing the pilot input with the loiter controller
*/
#define HYBRID_SPEED_0 10 // speed below which it is always safe to switch to loiter
#if MAIN_LOOP_RATE == 100
// definitions for 100hz loop update rate
# define HYBRID_BRAKE_TIME_ESTIMATE_MAX 600 // max number of cycles the brake will be applied before we switch to loiter
# define HYBRID_BRAKE_TO_LOITER_TIMER 150 // Number of cycles to transition from brake mode to loiter mode. Must be lower than HYBRID_LOITER_STAB_TIMER
# define HYBRID_LOITER_TO_PILOT_MIX_TIMER 50 // Set it from 100 to 200, the number of centiseconds loiter and manual commands are mixed to make a smooth transition.
# define HYBRID_SMOOTH_RATE_FACTOR 0.04f // filter applied to pilot's roll/pitch input as it returns to center. A lower number will cause the roll/pitch to return to zero more slowly if the brake_rate is also low.
# define HYBRID_WIND_COMP_TIMER_10HZ 10 // counter value used to reduce wind compensation to 10hz
#else
// definitions for 400hz loop update rate
# define HYBRID_BRAKE_TIME_ESTIMATE_MAX (600*4) // max number of cycles the brake will be applied before we switch to loiter
# define HYBRID_BRAKE_TO_LOITER_TIMER (150*4) // Number of cycles to transition from brake mode to loiter mode. Must be lower than HYBRID_LOITER_STAB_TIMER
# define HYBRID_LOITER_TO_PILOT_MIX_TIMER (50*4) // Set it from 100 to 200, the number of centiseconds loiter and manual commands are mixed to make a smooth transition.
# define HYBRID_SMOOTH_RATE_FACTOR 0.01f // filter applied to pilot's roll/pitch input as it returns to center. A lower number will cause the roll/pitch to return to zero more slowly if the brake_rate is also low.
# define HYBRID_WIND_COMP_TIMER_10HZ 40 // counter value used to reduce wind compensation to 10hz
#endif
// definitions that are independent of main loop rate
#define HYBRID_STICK_RELEASE_SMOOTH_ANGLE 1800 // max angle required (in centi-degrees) after which the smooth stick release effect is applied
#define HYBRID_WIND_COMP_START_TIMER 15 // delay (in 10zh increments) to start of wind compensation after loiter is engaged
#define HYBRID_WIND_COMP_ESTIMATE_SPEED_MAX 30 // wind compensation estimates will only run when velocity is at or below this speed in cm/s
// declare some function to keep compiler happy
static void hybrid_update_pilot_lean_angle(int16_t &lean_angle_filtered, int16_t &lean_angle_raw);
static int16_t hybrid_mix_controls(float mix_ratio, int16_t first_control, int16_t second_control);
static void hybrid_update_brake_angle_from_velocity(int16_t &brake_angle, float velocity);
static void hybrid_update_wind_comp_estimate();
static void hybrid_get_wind_comp_lean_angles(int16_t &roll_angle, int16_t &pitch_angle);
// mission state enumeration
enum hybrid_rp_mode {
HYBRID_PILOT_OVERRIDE=0, // pilot is controlling this axis (i.e. roll or pitch)
HYBRID_BRAKE, // this axis is braking towards zero
HYBRID_BRAKE_READY_TO_LOITER, // this axis has completed braking and is ready to enter loiter mode (both modes must be this value before moving to next stage)
HYBRID_BRAKE_TO_LOITER, // both vehicle's axis (roll and pitch) are transitioning from braking to loiter mode (braking and loiter controls are mixed)
HYBRID_LOITER, // both vehicle axis are holding position
HYBRID_LOITER_TO_PILOT_OVERRIDE // pilot has input controls on this axis and this axis is transitioning to pilot override (other axis will transition to brake if no pilot input)
};
static struct {
hybrid_rp_mode roll_mode : 3; // roll mode: pilot override, brake or loiter
hybrid_rp_mode pitch_mode : 3; // pitch mode: pilot override, brake or loiter
uint8_t braking_time_updated_roll : 1; // true once we have re-estimated the braking time. This is done once as the vehicle begins to flatten out after braking
uint8_t braking_time_updated_pitch : 1; // true once we have re-estimated the braking time. This is done once as the vehicle begins to flatten out after braking
// pilot input related variables
int16_t pilot_roll; // pilot requested roll angle (filtered to slow returns to zero)
int16_t pilot_pitch; // pilot requested roll angle (filtered to slow returns to zero)
// braking related variables
float brake_gain; // gain used during conversion of vehicle's velocity to lean angle during braking (calculated from brake_rate)
int16_t brake_roll; // target roll angle during braking periods
int16_t brake_pitch; // target pitch angle during braking periods
int16_t brake_timeout_roll; // number of cycles allowed for the braking to complete, this timeout will be updated at half-braking
int16_t brake_timeout_pitch; // number of cycles allowed for the braking to complete, this timeout will be updated at half-braking
int16_t brake_angle_max_roll; // maximum lean angle achieved during braking. Used to determine when the vehicle has begun to flatten out so that we can re-estimate the braking time
int16_t brake_angle_max_pitch; // maximum lean angle achieved during braking Used to determine when the vehicle has begun to flatten out so that we can re-estimate the braking time
int16_t brake_to_loiter_timer; // cycles to mix brake and loiter controls in HYBRID_BRAKE_TO_LOITER
// loiter related variables
int16_t loiter_to_pilot_timer_roll; // cycles to mix loiter and pilot controls in HYBRID_LOITER_TO_PILOT
int16_t loiter_to_pilot_timer_pitch; // cycles to mix loiter and pilot controls in HYBRID_LOITER_TO_PILOT
int16_t loiter_final_roll; // final roll angle from loiter controller as we exit loiter mode (used for mixing with pilot input)
int16_t loiter_final_pitch; // final pitch angle from loiter controller as we exit loiter mode (used for mixing with pilot input)
// wind compensation related variables
Vector2f wind_comp_ef; // wind compensation in earth frame, filtered lean angles from position controller
int16_t wind_comp_roll; // roll angle to compensate for wind
int16_t wind_comp_pitch; // pitch angle to compensate for wind
int8_t wind_comp_start_timer; // counter to delay start of wind compensation for a short time after loiter is engaged
int8_t wind_comp_timer; // counter to reduce wind_offset calcs to 10hz
// final output
int16_t roll; // final roll angle sent to attitude controller
int16_t pitch; // final pitch angle sent to attitude controller
} hybrid;
// hybrid_init - initialise hybrid controller
static bool hybrid_init(bool ignore_checks)
{
// fail to initialise hybrid mode if no GPS lock
if (!GPS_ok() && !ignore_checks) {
return false;
}
// set target to current position
wp_nav.init_loiter_target();
// clear pilot's feed forward for roll and pitch
wp_nav.set_pilot_desired_acceleration(0, 0);
// initialise altitude target to stopping point
pos_control.set_target_to_stopping_point_z();
// initialise lean angles to current attitude
hybrid.pilot_roll = 0;
hybrid.pilot_pitch = 0;
hybrid.roll = constrain_int16(ahrs.roll_sensor, -g.hybrid_brake_angle_max, g.hybrid_brake_angle_max);
hybrid.pitch = constrain_int16(ahrs.pitch_sensor, -g.hybrid_brake_angle_max, g.hybrid_brake_angle_max);
// compute brake_gain
hybrid.brake_gain = (15.0f * (float)g.hybrid_brake_rate + 95.0f) / 100.0f;
if (ap.land_complete) {
// if landed begin in loiter mode
hybrid.roll_mode = HYBRID_LOITER;
hybrid.pitch_mode = HYBRID_LOITER;
}else{
// if not landed start in pilot override to avoid hard twitch
hybrid.roll_mode = HYBRID_PILOT_OVERRIDE;
hybrid.pitch_mode = HYBRID_PILOT_OVERRIDE;
}
// initialise wind_comp each time hybrid is switched on
hybrid.wind_comp_ef.zero();
hybrid.wind_comp_roll = 0;
hybrid.wind_comp_pitch = 0;
hybrid.wind_comp_timer = 0;
return true;
}
// hybrid_run - runs the hybrid controller
// should be called at 100hz or more
static void hybrid_run()
{
int16_t target_roll, target_pitch; // pilot's roll and pitch angle inputs
float target_yaw_rate = 0; // pilot desired yaw rate in centi-degrees/sec
float target_climb_rate = 0; // pilot desired climb rate in centimeters/sec
float brake_to_loiter_mix; // mix of brake and loiter controls. 0 = fully brake controls, 1 = fully loiter controls
float loiter_to_pilot_mix; // mix of loiter and pilot controls. 0 = fully loiter controls, 1 = fully pilot controls
float vel_fw, vel_right; // vehicle's current velocity in body-frame forward and right directions
const Vector3f& vel = inertial_nav.get_velocity();
// if not auto armed set throttle to zero and exit immediately
if(!ap.auto_armed || !inertial_nav.position_ok()) {
wp_nav.init_loiter_target();
attitude_control.init_targets();
attitude_control.set_throttle_out(0, false);
return;
}
// process pilot inputs
if (!failsafe.radio) {
// apply SIMPLE mode transform to pilot inputs
update_simple_mode();
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(g.rc_4.control_in);
// get pilot desired climb rate (for alt-hold mode and take-off)
target_climb_rate = get_pilot_desired_climb_rate(g.rc_3.control_in);
// check for pilot requested take-off
if (ap.land_complete && target_climb_rate > 0) {
// indicate we are taking off
set_land_complete(false);
// clear i term when we're taking off
set_throttle_takeoff();
}
}
// if landed initialise loiter targets, set throttle to zero and exit
if (ap.land_complete) {
wp_nav.init_loiter_target();
attitude_control.init_targets();
attitude_control.set_throttle_out(0, false);
return;
}else{
// convert pilot input to lean angles
get_pilot_desired_lean_angles(g.rc_1.control_in, g.rc_2.control_in, target_roll, target_pitch);
// convert inertial nav earth-frame velocities to body-frame
// To-Do: move this to AP_Math (or perhaps we already have a function to do this)
vel_fw = vel.x*ahrs.cos_yaw() + vel.y*ahrs.sin_yaw();
vel_right = -vel.x*ahrs.sin_yaw() + vel.y*ahrs.cos_yaw();
// Roll state machine
// Each state (aka mode) is responsible for:
// 1. dealing with pilot input
// 2. calculating the final roll output to the attitude controller
// 3. checking if the state (aka mode) should be changed and if 'yes' perform any required initialisation for the new state
switch (hybrid.roll_mode) {
case HYBRID_PILOT_OVERRIDE:
// update pilot desired roll angle using latest radio input
// this filters the input so that it returns to zero no faster than the brake-rate
hybrid_update_pilot_lean_angle(hybrid.pilot_roll, target_roll);
// switch to BRAKE mode for next iteration if no pilot input
if ((target_roll == 0) && (abs(hybrid.pilot_roll) < 2 * g.hybrid_brake_rate)) {
// initialise BRAKE mode
hybrid.roll_mode = HYBRID_BRAKE; // Set brake roll mode
hybrid.brake_roll = 0; // initialise braking angle to zero
hybrid.brake_angle_max_roll = 0; // reset brake_angle_max so we can detect when vehicle begins to flatten out during braking
hybrid.brake_timeout_roll = HYBRID_BRAKE_TIME_ESTIMATE_MAX; // number of cycles the brake will be applied, updated during braking mode.
hybrid.braking_time_updated_roll = false; // flag the braking time can be re-estimated
}
// final lean angle should be pilot input plus wind compensation
hybrid.roll = hybrid.pilot_roll + hybrid.wind_comp_roll;
break;
case HYBRID_BRAKE:
case HYBRID_BRAKE_READY_TO_LOITER:
// calculate brake_roll angle to counter-act velocity
hybrid_update_brake_angle_from_velocity(hybrid.brake_roll, vel_right);
// update braking time estimate
if (!hybrid.braking_time_updated_roll) {
// check if brake angle is increasing
if (abs(hybrid.brake_roll) >= hybrid.brake_angle_max_roll) {
hybrid.brake_angle_max_roll = abs(hybrid.brake_roll);
} else {
// braking angle has started decreasing so re-estimate braking time
hybrid.brake_timeout_roll = 1+(uint16_t)(15L*(int32_t)(abs(hybrid.brake_roll))/(10L*(int32_t)g.hybrid_brake_rate)); // the 1.2 (12/10) factor has to be tuned in flight, here it means 120% of the "normal" time.
hybrid.braking_time_updated_roll = true;
}
}
// if velocity is very low reduce braking time to 0.5seconds
if ((fabs(vel_right) <= HYBRID_SPEED_0) && (hybrid.brake_timeout_roll > 50)) {
hybrid.brake_timeout_roll = 50;
}
// reduce braking timer
if (hybrid.brake_timeout_roll > 0) {
hybrid.brake_timeout_roll--;
} else {
// indicate that we are ready to move to Loiter.
// Loiter will only actually be engaged once both roll_mode and pitch_mode are changed to HYBRID_BRAKE_READY_TO_LOITER
// logic for engaging loiter is handled below the roll and pitch mode switch statements
hybrid.roll_mode = HYBRID_BRAKE_READY_TO_LOITER;
}
// check for pilot input
if (target_roll != 0) {
hybrid.roll_mode = HYBRID_PILOT_OVERRIDE;
}
// final lean angle is braking angle + wind compensation angle
hybrid.roll = hybrid.brake_roll + hybrid.wind_comp_roll;
break;
case HYBRID_BRAKE_TO_LOITER:
case HYBRID_LOITER:
// these modes are combined roll-pitch modes and are handled below
break;
case HYBRID_LOITER_TO_PILOT_OVERRIDE:
// update pilot desired roll angle using latest radio input
// this filters the input so that it returns to zero no faster than the brake-rate
hybrid_update_pilot_lean_angle(hybrid.pilot_roll, target_roll);
// count-down loiter to pilot timer
if (hybrid.loiter_to_pilot_timer_roll > 0) {
hybrid.loiter_to_pilot_timer_roll--;
} else {
// when timer runs out switch to full pilot override for next iteration
hybrid.roll_mode = HYBRID_PILOT_OVERRIDE;
}
// calculate loiter_to_pilot mix ratio
loiter_to_pilot_mix = (float)hybrid.loiter_to_pilot_timer_roll / (float)HYBRID_LOITER_TO_PILOT_MIX_TIMER;
// mix final loiter lean angle and pilot desired lean angles
hybrid.roll = hybrid_mix_controls(loiter_to_pilot_mix, hybrid.loiter_final_roll, hybrid.pilot_roll + hybrid.wind_comp_roll);
break;
}
// Pitch state machine
// Each state (aka mode) is responsible for:
// 1. dealing with pilot input
// 2. calculating the final pitch output to the attitude contpitcher
// 3. checking if the state (aka mode) should be changed and if 'yes' perform any required initialisation for the new state
switch (hybrid.pitch_mode) {
case HYBRID_PILOT_OVERRIDE:
// update pilot desired pitch angle using latest radio input
// this filters the input so that it returns to zero no faster than the brake-rate
hybrid_update_pilot_lean_angle(hybrid.pilot_pitch, target_pitch);
// switch to BRAKE mode for next iteration if no pilot input
if ((target_pitch == 0) && (abs(hybrid.pilot_pitch) < 2 * g.hybrid_brake_rate)) {
// initialise BRAKE mode
hybrid.pitch_mode = HYBRID_BRAKE; // set brake pitch mode
hybrid.brake_pitch = 0; // initialise braking angle to zero
hybrid.brake_angle_max_pitch = 0; // reset brake_angle_max so we can detect when vehicle begins to flatten out during braking
hybrid.brake_timeout_pitch = HYBRID_BRAKE_TIME_ESTIMATE_MAX; // number of cycles the brake will be applied, updated during braking mode.
hybrid.braking_time_updated_pitch = false; // flag the braking time can be re-estimated
}
// final lean angle should be pilot input plus wind compensation
hybrid.pitch = hybrid.pilot_pitch + hybrid.wind_comp_pitch;
break;
case HYBRID_BRAKE:
case HYBRID_BRAKE_READY_TO_LOITER:
// calculate brake_pitch angle to counter-act velocity
hybrid_update_brake_angle_from_velocity(hybrid.brake_pitch, -vel_fw);
// update braking time estimate
if (!hybrid.braking_time_updated_pitch) {
// check if brake angle is increasing
if (abs(hybrid.brake_pitch) >= hybrid.brake_angle_max_pitch) {
hybrid.brake_angle_max_pitch = abs(hybrid.brake_pitch);
} else {
// braking angle has started decreasing so re-estimate braking time
hybrid.brake_timeout_pitch = 1+(uint16_t)(15L*(int32_t)(abs(hybrid.brake_pitch))/(10L*(int32_t)g.hybrid_brake_rate)); // the 1.2 (12/10) factor has to be tuned in flight, here it means 120% of the "normal" time.
hybrid.braking_time_updated_pitch = true;
}
}
// if velocity is very low reduce braking time to 0.5seconds
// Note: this speed is extremely low (only 10cm/s) meaning this case is likely never executed
if ((fabs(vel_right) <= HYBRID_SPEED_0) && (hybrid.brake_timeout_pitch > 50)) {
hybrid.brake_timeout_pitch = 50;
}
// reduce braking timer
if (hybrid.brake_timeout_pitch > 0) {
hybrid.brake_timeout_pitch--;
} else {
// indicate that we are ready to move to Loiter.
// Loiter will only actually be engaged once both pitch_mode and pitch_mode are changed to HYBRID_BRAKE_READY_TO_LOITER
// logic for engaging loiter is handled below the pitch and pitch mode switch statements
hybrid.pitch_mode = HYBRID_BRAKE_READY_TO_LOITER;
}
// check for pilot input
if (target_pitch != 0) {
hybrid.pitch_mode = HYBRID_PILOT_OVERRIDE;
}
// final lean angle is braking angle + wind compensation angle
hybrid.pitch = hybrid.brake_pitch + hybrid.wind_comp_pitch;
break;
case HYBRID_BRAKE_TO_LOITER:
case HYBRID_LOITER:
// these modes are combined pitch-pitch modes and are handled below
break;
case HYBRID_LOITER_TO_PILOT_OVERRIDE:
// update pilot desired pitch angle using latest radio input
// this filters the input so that it returns to zero no faster than the brake-rate
hybrid_update_pilot_lean_angle(hybrid.pilot_pitch, target_pitch);
// count-down loiter to pilot timer
if (hybrid.loiter_to_pilot_timer_pitch > 0) {
hybrid.loiter_to_pilot_timer_pitch--;
} else {
// when timer runs out switch to full pilot override for next iteration
hybrid.pitch_mode = HYBRID_PILOT_OVERRIDE;
}
// calculate loiter_to_pilot mix ratio
loiter_to_pilot_mix = (float)hybrid.loiter_to_pilot_timer_pitch / (float)HYBRID_LOITER_TO_PILOT_MIX_TIMER;
// mix final loiter lean angle and pilot desired lean angles
hybrid.pitch = hybrid_mix_controls(loiter_to_pilot_mix, hybrid.loiter_final_pitch, hybrid.pilot_pitch + hybrid.wind_comp_pitch);
break;
}
//
// Shared roll & pitch states (HYBRID_BRAKE_TO_LOITER and HYBRID_LOITER)
//
// switch into LOITER mode when both roll and pitch are ready
if (hybrid.roll_mode == HYBRID_BRAKE_READY_TO_LOITER && hybrid.pitch_mode == HYBRID_BRAKE_READY_TO_LOITER) {
hybrid.roll_mode = HYBRID_BRAKE_TO_LOITER;
hybrid.pitch_mode = HYBRID_BRAKE_TO_LOITER;
hybrid.brake_to_loiter_timer = HYBRID_BRAKE_TO_LOITER_TIMER;
// init loiter controller
wp_nav.init_loiter_target();
// move wind compensation back into loiter I term
g.pid_loiter_rate_lat.set_integrator(hybrid.wind_comp_ef.x);
g.pid_loiter_rate_lon.set_integrator(hybrid.wind_comp_ef.y);
// set delay to start of wind compensation estimate updates
hybrid.wind_comp_start_timer = HYBRID_WIND_COMP_START_TIMER;
}
// roll-mode is used as the combined roll+pitch mode when in BRAKE_TO_LOITER or LOITER modes
if (hybrid.roll_mode == HYBRID_BRAKE_TO_LOITER || hybrid.roll_mode == HYBRID_LOITER) {
// force pitch mode to be same as roll_mode just to keep it consistent (it's not actually used in these states)
hybrid.pitch_mode = hybrid.roll_mode;
// handle combined roll+pitch mode
switch (hybrid.roll_mode) {
case HYBRID_BRAKE_TO_LOITER:
// reduce brake_to_loiter timer
if (hybrid.brake_to_loiter_timer > 0) {
hybrid.brake_to_loiter_timer--;
} else {
// progress to full loiter on next iteration
hybrid.roll_mode = HYBRID_LOITER;
hybrid.pitch_mode = HYBRID_LOITER;
}
// calculate percentage mix of loiter and brake control
brake_to_loiter_mix = (float)hybrid.brake_to_loiter_timer / (float)HYBRID_BRAKE_TO_LOITER_TIMER;
// calculate brake_roll and pitch angles to counter-act velocity
hybrid_update_brake_angle_from_velocity(hybrid.brake_roll, vel_right);
hybrid_update_brake_angle_from_velocity(hybrid.brake_pitch, -vel_fw);
// run loiter controller
wp_nav.update_loiter();
// calculate final roll and pitch output by mixing loiter and brake controls
hybrid.roll = hybrid_mix_controls(brake_to_loiter_mix, hybrid.brake_roll + hybrid.wind_comp_roll, wp_nav.get_roll());
hybrid.pitch = hybrid_mix_controls(brake_to_loiter_mix, hybrid.brake_pitch + hybrid.wind_comp_pitch, wp_nav.get_pitch());
// check for pilot input
if (target_roll != 0 || target_pitch != 0) {
// if roll input switch to pilot override for roll
if (target_roll != 0) {
hybrid.roll_mode = HYBRID_PILOT_OVERRIDE;
// switch pitch-mode to brake (but ready to go back to loiter anytime)
hybrid.pitch_mode = HYBRID_BRAKE_READY_TO_LOITER;
}
// if pitch input switch to pilot override for pitch
if (target_pitch != 0) {
hybrid.pitch_mode = HYBRID_PILOT_OVERRIDE;
if (target_roll == 0) {
// switch roll-mode to brake (but ready to go back to loiter anytime)
hybrid.roll_mode = HYBRID_BRAKE_READY_TO_LOITER;
}
}
}
break;
case HYBRID_LOITER:
// run loiter controller
wp_nav.update_loiter();
// set roll angle based on loiter controller outputs
hybrid.roll = wp_nav.get_roll();
hybrid.pitch = wp_nav.get_pitch();
// update wind compensation estimate
hybrid_update_wind_comp_estimate();
// check for pilot input
if (target_roll != 0 || target_pitch != 0) {
// if roll input switch to pilot override for roll
if (target_roll != 0) {
hybrid.roll_mode = HYBRID_LOITER_TO_PILOT_OVERRIDE;
hybrid.loiter_to_pilot_timer_roll = HYBRID_LOITER_TO_PILOT_MIX_TIMER;
// initialise pilot_roll
hybrid.pilot_roll = target_roll;
// switch pitch-mode to brake (but ready to go back to loiter anytime)
hybrid.pitch_mode = HYBRID_BRAKE_READY_TO_LOITER;
}
// if pitch input switch to pilot override for pitch
if (target_pitch != 0) {
hybrid.pitch_mode = HYBRID_LOITER_TO_PILOT_OVERRIDE;
hybrid.loiter_to_pilot_timer_pitch = HYBRID_LOITER_TO_PILOT_MIX_TIMER;
// initialise pilot_pitch
hybrid.pilot_pitch = target_pitch;
// if roll not overriden switch roll-mode to brake (but be ready to go back to loiter any time)
if (target_roll == 0) {
hybrid.roll_mode = HYBRID_BRAKE_READY_TO_LOITER;
}
}
// store final loiter outputs for mixing with pilot input
hybrid.loiter_final_roll = wp_nav.get_roll();
hybrid.loiter_final_pitch = wp_nav.get_pitch();
// retrieve latest wind compensation lean angles
hybrid_get_wind_comp_lean_angles(hybrid.wind_comp_roll, hybrid.wind_comp_pitch);
}
break;
default:
// do nothing for uncombined roll and pitch modes
break;
}
}
// constrain target pitch/roll angles
hybrid.roll = constrain_int16(hybrid.roll, -aparm.angle_max, aparm.angle_max);
hybrid.pitch = constrain_int16(hybrid.pitch, -aparm.angle_max, aparm.angle_max);
// update attitude controller targets
attitude_control.angle_ef_roll_pitch_rate_ef_yaw(hybrid.roll, hybrid.pitch, target_yaw_rate);
// throttle control
if (sonar_alt_health >= SONAR_ALT_HEALTH_MAX) {
// if sonar is ok, use surface tracking
target_climb_rate = get_throttle_surface_tracking(target_climb_rate, pos_control.get_alt_target(), G_Dt);
}
// update altitude target and call position controller
pos_control.set_alt_target_from_climb_rate(target_climb_rate, G_Dt);
pos_control.update_z_controller();
}
}
// hybrid_update_pilot_lean_angle - update the pilot's filtered lean angle with the latest raw input received
static void hybrid_update_pilot_lean_angle(int16_t &lean_angle_filtered, int16_t &lean_angle_raw)
{
// if raw input is large or reversing the vehicle's lean angle immediately set the fitlered angle to the new raw angle
if ((lean_angle_filtered > 0 && lean_angle_raw < 0) || (lean_angle_filtered < 0 && lean_angle_raw > 0) || (abs(lean_angle_raw) > HYBRID_STICK_RELEASE_SMOOTH_ANGLE)) {
lean_angle_filtered = lean_angle_raw;
} else {
// lean_angle_raw must be pulling lean_angle_filtered towards zero, smooth the decrease
if (lean_angle_filtered > 0) {
// reduce the filtered lean angle at 4% or the brake rate (whichever is faster).
lean_angle_filtered -= max((float)lean_angle_filtered * HYBRID_SMOOTH_RATE_FACTOR, g.hybrid_brake_rate);
// do not let the filtered angle fall below the pilot's input lean angle.
// the above line pulls the filtered angle down and the below line acts as a catch
lean_angle_filtered = max(lean_angle_filtered, lean_angle_raw);
}else{
lean_angle_filtered += max(-(float)lean_angle_filtered * HYBRID_SMOOTH_RATE_FACTOR, g.hybrid_brake_rate);
lean_angle_filtered = min(lean_angle_filtered, lean_angle_raw);
}
}
}
// hybrid_mix_controls - mixes two controls based on the mix_ratio
// mix_ratio of 1 = use first_control completely, 0 = use second_control completely, 0.5 = mix evenly
static int16_t hybrid_mix_controls(float mix_ratio, int16_t first_control, int16_t second_control)
{
mix_ratio = constrain_float(mix_ratio, 0.0f, 1.0f);
return (int16_t)((mix_ratio * first_control) + ((1.0f-mix_ratio)*second_control));
}
// hybrid_update_brake_angle_from_velocity - updates the brake_angle based on the vehicle's velocity and brake_gain
// brake_angle is slewed with the wpnav.hybrid_brake_rate and constrained by the wpnav.hybrid_braking_angle_max
// velocity is assumed to be in the same direction as lean angle so for pitch you should provide the velocity backwards (i.e. -ve forward velocity)
static void hybrid_update_brake_angle_from_velocity(int16_t &brake_angle, float velocity)
{
float lean_angle;
int16_t brake_rate = g.hybrid_brake_rate;
#if MAIN_LOOP_RATE == 400
brake_rate /= 4;
if (brake_rate <= 0) {
brake_rate = 1;
}
#endif
// calculate velocity-only based lean angle
if (velocity >= 0) {
lean_angle = -hybrid.brake_gain * velocity * (1.0f+500.0f/(velocity+60.0f));
} else {
lean_angle = -hybrid.brake_gain * velocity * (1.0f+500.0f/(-velocity+60.0f));
}
// do not let lean_angle be too far from brake_angle
brake_angle = constrain_int16((int16_t)lean_angle, brake_angle - brake_rate, brake_angle + brake_rate);
// constrain final brake_angle
brake_angle = constrain_int16(brake_angle, -g.hybrid_brake_angle_max, g.hybrid_brake_angle_max);
}
// hybrid_update_wind_comp_estimate - updates wind compensation estimate
// should be called at the maximum loop rate when loiter is engaged
static void hybrid_update_wind_comp_estimate()
{
// reduce rate to 10hz
hybrid.wind_comp_timer++;
if (hybrid.wind_comp_timer < HYBRID_WIND_COMP_TIMER_10HZ) {
return;
}
hybrid.wind_comp_timer = 0;
// check wind estimate start has not been delayed
if (hybrid.wind_comp_start_timer > 0) {
hybrid.wind_comp_start_timer--;
return;
}
// check horizontal velocity is low
if (inertial_nav.get_velocity_xy() > HYBRID_WIND_COMP_ESTIMATE_SPEED_MAX) {
return;
}
// get position controller accel target
// To-Do: clean this up by using accessor in loiter controller (or move entire hybrid controller to a library shared with loiter)
const Vector3f& accel_target = pos_control.get_accel_target();
// update wind compensation in earth-frame lean angles
if (hybrid.wind_comp_ef.x == 0) {
// if wind compensation has not been initialised set it immediately to the pos controller's desired accel in north direction
hybrid.wind_comp_ef.x = accel_target.x;
} else {
// low pass filter the position controller's lean angle output
hybrid.wind_comp_ef.x = 0.97f*hybrid.wind_comp_ef.x + 0.03f*accel_target.x;
}
if (hybrid.wind_comp_ef.y == 0) {
// if wind compensation has not been initialised set it immediately to the pos controller's desired accel in north direction
hybrid.wind_comp_ef.y = accel_target.y;
} else {
// low pass filter the position controller's lean angle output
hybrid.wind_comp_ef.y = 0.97f*hybrid.wind_comp_ef.y + 0.03f*accel_target.y;
}
}
// hybrid_get_wind_comp_lean_angles - retrieve wind compensation angles in body frame roll and pitch angles
static void hybrid_get_wind_comp_lean_angles(int16_t &roll_angle, int16_t &pitch_angle)
{
// convert earth frame desired accelerations to body frame roll and pitch lean angles
roll_angle = (float)fast_atan((-hybrid.wind_comp_ef.x*ahrs.sin_yaw() + hybrid.wind_comp_ef.y*ahrs.cos_yaw())/981)*(18000/M_PI);
pitch_angle = (float)fast_atan(-(hybrid.wind_comp_ef.x*ahrs.cos_yaw() + hybrid.wind_comp_ef.y*ahrs.sin_yaw())/981)*(18000/M_PI);
}