mirror of https://github.com/ArduPilot/ardupilot
203 lines
7.4 KiB
C++
203 lines
7.4 KiB
C++
#include "Sub.h"
|
|
|
|
// get_smoothing_gain - returns smoothing gain to be passed into attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw
|
|
// result is a number from 2 to 12 with 2 being very sluggish and 12 being very crisp
|
|
float Sub::get_smoothing_gain()
|
|
{
|
|
return (2.0f + (float)g.rc_feel_rp/10.0f);
|
|
}
|
|
|
|
// get_pilot_desired_angle - transform pilot's roll or pitch input into a desired lean angle
|
|
// returns desired angle in centi-degrees
|
|
void Sub::get_pilot_desired_lean_angles(float roll_in, float pitch_in, float &roll_out, float &pitch_out, float angle_max)
|
|
{
|
|
// sanity check angle max parameter
|
|
aparm.angle_max = constrain_int16(aparm.angle_max,1000,8000);
|
|
|
|
// limit max lean angle
|
|
angle_max = constrain_float(angle_max, 1000, aparm.angle_max);
|
|
|
|
// scale roll_in, pitch_in to ANGLE_MAX parameter range
|
|
float scaler = aparm.angle_max/(float)ROLL_PITCH_INPUT_MAX;
|
|
roll_in *= scaler;
|
|
pitch_in *= scaler;
|
|
|
|
// do circular limit
|
|
float total_in = norm(pitch_in, roll_in);
|
|
if (total_in > angle_max) {
|
|
float ratio = angle_max / total_in;
|
|
roll_in *= ratio;
|
|
pitch_in *= ratio;
|
|
}
|
|
|
|
// do lateral tilt to euler roll conversion
|
|
roll_in = (18000/M_PI) * atanf(cosf(pitch_in*(M_PI/18000))*tanf(roll_in*(M_PI/18000)));
|
|
|
|
// return
|
|
roll_out = roll_in;
|
|
pitch_out = pitch_in;
|
|
}
|
|
|
|
// get_pilot_desired_heading - transform pilot's yaw input into a
|
|
// desired yaw rate
|
|
// returns desired yaw rate in centi-degrees per second
|
|
float Sub::get_pilot_desired_yaw_rate(int16_t stick_angle)
|
|
{
|
|
// convert pilot input to the desired yaw rate
|
|
return stick_angle * g.acro_yaw_p;
|
|
}
|
|
|
|
// check for ekf yaw reset and adjust target heading
|
|
void Sub::check_ekf_yaw_reset()
|
|
{
|
|
float yaw_angle_change_rad = 0.0f;
|
|
uint32_t new_ekfYawReset_ms = ahrs.getLastYawResetAngle(yaw_angle_change_rad);
|
|
if (new_ekfYawReset_ms != ekfYawReset_ms) {
|
|
attitude_control.shift_ef_yaw_target(ToDeg(yaw_angle_change_rad) * 100.0f);
|
|
ekfYawReset_ms = new_ekfYawReset_ms;
|
|
}
|
|
}
|
|
|
|
/*************************************************************
|
|
* yaw controllers
|
|
*************************************************************/
|
|
|
|
// get_roi_yaw - returns heading towards location held in roi_WP
|
|
// should be called at 100hz
|
|
float Sub::get_roi_yaw()
|
|
{
|
|
static uint8_t roi_yaw_counter = 0; // used to reduce update rate to 100hz
|
|
|
|
roi_yaw_counter++;
|
|
if (roi_yaw_counter >= 4) {
|
|
roi_yaw_counter = 0;
|
|
yaw_look_at_WP_bearing = pv_get_bearing_cd(inertial_nav.get_position(), roi_WP);
|
|
}
|
|
|
|
return yaw_look_at_WP_bearing;
|
|
}
|
|
|
|
float Sub::get_look_ahead_yaw()
|
|
{
|
|
const Vector3f& vel = inertial_nav.get_velocity();
|
|
float speed = norm(vel.x,vel.y);
|
|
// Commanded Yaw to automatically look ahead.
|
|
if (position_ok() && (speed > YAW_LOOK_AHEAD_MIN_SPEED)) {
|
|
yaw_look_ahead_bearing = degrees(atan2f(vel.y,vel.x))*100.0f;
|
|
}
|
|
return yaw_look_ahead_bearing;
|
|
}
|
|
|
|
/*************************************************************
|
|
* throttle control
|
|
****************************************************************/
|
|
|
|
// get_pilot_desired_climb_rate - transform pilot's throttle input to climb rate in cm/s
|
|
// without any deadzone at the bottom
|
|
float Sub::get_pilot_desired_climb_rate(float throttle_control)
|
|
{
|
|
// throttle failsafe check
|
|
if (failsafe.pilot_input) {
|
|
return 0.0f;
|
|
}
|
|
|
|
float desired_rate = 0.0f;
|
|
float mid_stick = channel_throttle->get_control_mid();
|
|
float deadband_top = mid_stick + g.throttle_deadzone;
|
|
float deadband_bottom = mid_stick - g.throttle_deadzone;
|
|
|
|
// ensure a reasonable throttle value
|
|
throttle_control = constrain_float(throttle_control,0.0f,1000.0f);
|
|
|
|
// ensure a reasonable deadzone
|
|
g.throttle_deadzone = constrain_int16(g.throttle_deadzone, 0, 400);
|
|
|
|
// check throttle is above, below or in the deadband
|
|
if (throttle_control < deadband_bottom) {
|
|
// below the deadband
|
|
desired_rate = g.pilot_velocity_z_max * (throttle_control-deadband_bottom) / deadband_bottom;
|
|
} else if (throttle_control > deadband_top) {
|
|
// above the deadband
|
|
desired_rate = g.pilot_velocity_z_max * (throttle_control-deadband_top) / (1000.0f-deadband_top);
|
|
} else {
|
|
// must be in the deadband
|
|
desired_rate = 0.0f;
|
|
}
|
|
|
|
// desired climb rate for logging
|
|
desired_climb_rate = desired_rate;
|
|
|
|
return desired_rate;
|
|
}
|
|
|
|
// get_surface_tracking_climb_rate - hold vehicle at the desired distance above the ground
|
|
// returns climb rate (in cm/s) which should be passed to the position controller
|
|
float Sub::get_surface_tracking_climb_rate(int16_t target_rate, float current_alt_target, float dt)
|
|
{
|
|
#if RANGEFINDER_ENABLED == ENABLED
|
|
static uint32_t last_call_ms = 0;
|
|
float distance_error;
|
|
float velocity_correction;
|
|
float current_alt = inertial_nav.get_altitude();
|
|
|
|
uint32_t now = millis();
|
|
|
|
// reset target altitude if this controller has just been engaged
|
|
if (now - last_call_ms > RANGEFINDER_TIMEOUT_MS) {
|
|
target_rangefinder_alt = rangefinder_state.alt_cm + current_alt_target - current_alt;
|
|
}
|
|
last_call_ms = now;
|
|
|
|
// adjust rangefinder target alt if motors have not hit their limits
|
|
if ((target_rate<0 && !motors.limit.throttle_lower) || (target_rate>0 && !motors.limit.throttle_upper)) {
|
|
target_rangefinder_alt += target_rate * dt;
|
|
}
|
|
|
|
// do not let target altitude get too far from current altitude above ground
|
|
// Note: the 750cm limit is perhaps too wide but is consistent with the regular althold limits and helps ensure a smooth transition
|
|
target_rangefinder_alt = constrain_float(target_rangefinder_alt,rangefinder_state.alt_cm-pos_control.get_leash_down_z(),rangefinder_state.alt_cm+pos_control.get_leash_up_z());
|
|
|
|
// calc desired velocity correction from target rangefinder alt vs actual rangefinder alt (remove the error already passed to Altitude controller to avoid oscillations)
|
|
distance_error = (target_rangefinder_alt - rangefinder_state.alt_cm) - (current_alt_target - current_alt);
|
|
velocity_correction = distance_error * g.rangefinder_gain;
|
|
velocity_correction = constrain_float(velocity_correction, -THR_SURFACE_TRACKING_VELZ_MAX, THR_SURFACE_TRACKING_VELZ_MAX);
|
|
|
|
// return combined pilot climb rate + rate to correct rangefinder alt error
|
|
return (target_rate + velocity_correction);
|
|
#else
|
|
return (float)target_rate;
|
|
#endif
|
|
}
|
|
|
|
// updates position controller's maximum altitude using fence and EKF limits
|
|
void Sub::update_poscon_alt_max()
|
|
{
|
|
// minimum altitude, ie. maximum depth
|
|
// interpreted as no limit if left as zero
|
|
float min_alt_cm = 0.0;
|
|
|
|
// no limit if greater than 100, a limit is necessary,
|
|
// or the vehicle will try to fly out of the water
|
|
float max_alt_cm = g.surface_depth; // minimum depth
|
|
|
|
#if AC_FENCE == ENABLED
|
|
// set fence altitude limit in position controller
|
|
if ((fence.get_enabled_fences() & AC_FENCE_TYPE_ALT_MAX) != 0) {
|
|
min_alt_cm = fence.get_safe_alt_min()*100.0f;
|
|
max_alt_cm = fence.get_safe_alt_max()*100.0f;
|
|
}
|
|
#endif
|
|
// pass limit to pos controller
|
|
pos_control.set_alt_min(min_alt_cm);
|
|
pos_control.set_alt_max(max_alt_cm);
|
|
}
|
|
|
|
// rotate vector from vehicle's perspective to North-East frame
|
|
void Sub::rotate_body_frame_to_NE(float &x, float &y)
|
|
{
|
|
float ne_x = x*ahrs.cos_yaw() - y*ahrs.sin_yaw();
|
|
float ne_y = x*ahrs.sin_yaw() + y*ahrs.cos_yaw();
|
|
x = ne_x;
|
|
y = ne_y;
|
|
}
|