ardupilot/libraries/AP_Motors/AP_MotorsHeli.h

210 lines
9.2 KiB
C++

/// @file AP_MotorsHeli.h
/// @brief Motor control class for Traditional Heli
#pragma once
#include <inttypes.h>
#include <AP_Common/AP_Common.h>
#include <AP_Math/AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
#include <RC_Channel/RC_Channel.h> // RC Channel Library
#include "AP_Motors_Class.h"
#include "AP_MotorsHeli_RSC.h"
// maximum number of swashplate servos
#define AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS 3
// servo output rates
#define AP_MOTORS_HELI_SPEED_DEFAULT 125 // default servo update rate for helicopters
// default swash min and max angles and positions
#define AP_MOTORS_HELI_SWASH_CYCLIC_MAX 2500
#define AP_MOTORS_HELI_COLLECTIVE_MIN 1250
#define AP_MOTORS_HELI_COLLECTIVE_MAX 1750
#define AP_MOTORS_HELI_COLLECTIVE_MID 1500
// swash min while landed or landing (as a number from 0 ~ 1000
#define AP_MOTORS_HELI_LAND_COLLECTIVE_MIN 0
// default main rotor speed (ch8 out) as a number from 0 ~ 1000
#define AP_MOTORS_HELI_RSC_SETPOINT 700
// default main rotor critical speed
#define AP_MOTORS_HELI_RSC_CRITICAL 500
// RSC output defaults
#define AP_MOTORS_HELI_RSC_IDLE_DEFAULT 0
#define AP_MOTORS_HELI_RSC_POWER_LOW_DEFAULT 200
#define AP_MOTORS_HELI_RSC_POWER_HIGH_DEFAULT 700
// default main rotor ramp up time in seconds
#define AP_MOTORS_HELI_RSC_RAMP_TIME 1 // 1 second to ramp output to main rotor ESC to full power (most people use exterrnal govenors so we can ramp up quickly)
#define AP_MOTORS_HELI_RSC_RUNUP_TIME 10 // 10 seconds for rotor to reach full speed
// flybar types
#define AP_MOTORS_HELI_NOFLYBAR 0
class AP_HeliControls;
/// @class AP_MotorsHeli
class AP_MotorsHeli : public AP_Motors {
public:
/// Constructor
AP_MotorsHeli( uint16_t loop_rate,
uint16_t speed_hz = AP_MOTORS_HELI_SPEED_DEFAULT) :
AP_Motors(loop_rate, speed_hz)
{
AP_Param::setup_object_defaults(this, var_info);
// initialise flags
_heliflags.landing_collective = 0;
_heliflags.rotor_runup_complete = 0;
};
// init
void Init();
// set update rate to motors - a value in hertz
virtual void set_update_rate( uint16_t speed_hz ) = 0;
// enable - starts allowing signals to be sent to motors
virtual void enable() = 0;
// output_min - sets servos to neutral point with motors stopped
void output_min();
// output_test - spin a motor at the pwm value specified
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
virtual void output_test(uint8_t motor_seq, int16_t pwm) = 0;
//
// heli specific methods
//
// parameter_check - returns true if helicopter specific parameters are sensible, used for pre-arm check
virtual bool parameter_check(bool display_msg) const;
// has_flybar - returns true if we have a mechical flybar
virtual bool has_flybar() const { return AP_MOTORS_HELI_NOFLYBAR; }
// set_collective_for_landing - limits collective from going too low if we know we are landed
void set_collective_for_landing(bool landing) { _heliflags.landing_collective = landing; }
// get_rsc_mode - gets the rotor speed control method (AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH or AP_MOTORS_HELI_RSC_MODE_SETPOINT)
uint8_t get_rsc_mode() const { return _rsc_mode; }
// get_rsc_setpoint - gets contents of _rsc_setpoint parameter (0~1)
float get_rsc_setpoint() const { return _rsc_setpoint / 1000.0f; }
// set_desired_rotor_speed - sets target rotor speed as a number from 0 ~ 1
virtual void set_desired_rotor_speed(float desired_speed) = 0;
// get_desired_rotor_speed - gets target rotor speed as a number from 0 ~ 1
virtual float get_desired_rotor_speed() const = 0;
// get_main_rotor_speed - gets estimated or measured main rotor speed
virtual float get_main_rotor_speed() const = 0;
// return true if the main rotor is up to speed
bool rotor_runup_complete() const { return _heliflags.rotor_runup_complete; }
// rotor_speed_above_critical - return true if rotor speed is above that critical for flight
virtual bool rotor_speed_above_critical() const = 0;
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
virtual uint16_t get_motor_mask() = 0;
// output - sends commands to the motors
void output();
// supports_yaw_passthrough
virtual bool supports_yaw_passthrough() const { return false; }
float get_throttle_hover() const { return 0.5f; }
// var_info for holding Parameter information
static const struct AP_Param::GroupInfo var_info[];
protected:
// manual servo modes (used for setup)
enum ServoControlModes {
SERVO_CONTROL_MODE_AUTOMATED = 0,
SERVO_CONTROL_MODE_MANUAL_PASSTHROUGH,
SERVO_CONTROL_MODE_MANUAL_MAX,
SERVO_CONTROL_MODE_MANUAL_CENTER,
SERVO_CONTROL_MODE_MANUAL_MIN,
SERVO_CONTROL_MODE_MANUAL_OSCILLATE,
};
// output - sends commands to the motors
void output_armed_stabilizing();
void output_armed_zero_throttle();
void output_disarmed();
// update_motor_controls - sends commands to motor controllers
virtual void update_motor_control(RotorControlState state) = 0;
// reset_flight_controls - resets all controls and scalars to flight status
void reset_flight_controls();
// update the throttle input filter
void update_throttle_filter();
// move_actuators - moves swash plate and tail rotor
virtual void move_actuators(float roll_out, float pitch_out, float coll_in, float yaw_out) = 0;
// reset_swash_servo - free up swash servo for maximum movement
void reset_swash_servo(RC_Channel& servo);
// init_outputs - initialise Servo/PWM ranges and endpoints
virtual void init_outputs() = 0;
// calculate_armed_scalars - must be implemented by child classes
virtual void calculate_armed_scalars() = 0;
// calculate_scalars - must be implemented by child classes
virtual void calculate_scalars() = 0;
// calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position
virtual void calculate_roll_pitch_collective_factors() = 0;
// servo_test - move servos through full range of movement
// to be overloaded by child classes, different vehicle types would have different movement patterns
virtual void servo_test() = 0;
// flags bitmask
struct heliflags_type {
uint8_t landing_collective : 1; // true if collective is setup for landing which has much higher minimum
uint8_t rotor_runup_complete : 1; // true if the rotors have had enough time to wind up
} _heliflags;
// parameters
AP_Int16 _cyclic_max; // Maximum cyclic angle of the swash plate in centi-degrees
AP_Int16 _collective_min; // Lowest possible servo position for the swashplate
AP_Int16 _collective_max; // Highest possible servo position for the swashplate
AP_Int16 _collective_mid; // Swash servo position corresponding to zero collective pitch (or zero lift for Asymmetrical blades)
AP_Int8 _servo_mode; // Pass radio inputs directly to servos during set-up through mission planner
AP_Int16 _rsc_setpoint; // rotor speed when RSC mode is set to is enabledv
AP_Int8 _rsc_mode; // Which main rotor ESC control mode is active
AP_Int8 _rsc_ramp_time; // Time in seconds for the output to the main rotor's ESC to reach full speed
AP_Int8 _rsc_runup_time; // Time in seconds for the main rotor to reach full speed. Must be longer than _rsc_ramp_time
AP_Int16 _land_collective_min; // Minimum collective when landed or landing
AP_Int16 _rsc_critical; // Rotor speed below which flight is not possible
AP_Int16 _rsc_idle_output; // Rotor control output while at idle
AP_Int16 _rsc_power_low; // throttle value sent to throttle servo at zero collective pitch
AP_Int16 _rsc_power_high; // throttle value sent to throttle servo at maximum collective pitch
AP_Int16 _rsc_power_negc; // throttle value sent to throttle servo at full negative collective pitch
AP_Int16 _rsc_slewrate; // throttle slew rate (percentage per second)
AP_Int8 _servo_test; // sets number of cycles to test servo movement on bootup
// internal variables
float _rollFactor[AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS];
float _pitchFactor[AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS];
float _collectiveFactor[AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS];
float _collective_mid_pct = 0.0f; // collective mid parameter value converted to 0 ~ 1 range
uint8_t _servo_test_cycle_counter = 0; // number of test cycles left to run after bootup
};