ardupilot/libraries/AP_Scripting/examples/plane-wind-fs.lua

431 lines
15 KiB
Lua

-- Adds a smart failsafe that accounts for how far the plane is from home
-- the average battery consumption, and the wind to decide when to failsafe
--
-- CAUTION: This script only works for Plane
---@diagnostic disable: cast-local-type
---@diagnostic disable: undefined-global
-- store the batt info as { instance, filtered, capacity, margin_mah }
-- instance: the battery monitor instance (zero indexed)
-- filtered: internal variable for current draw
-- capacity: internal variable populated from battery monitor capacity param
-- margin_mah: the mah to be remaining when you reach home and use the time margin, note that this is on top of CRT_MAH
local batt_info = { {0, 0, 0, 0}, -- main battery
-- add more batteries to monitor here
}
local margin = 30 -- margin in seconds of flight time that should remain once we have reached
local time_SF = 1 -- the return time safety factor, 1.1 gives 10% extra time for return flight
local filter = 0.9 -- filter gain
local min_flying_time = 30 -- seconds, must have been flying in a none Qmode above the min alt for this long before script will start sampling current
local print_time = 15 -- seconds between update prints (set to zero to disable)
local alt_min = 0 -- the minimum altitude above home the script will start working at, zero disables
-- if true current draw is normalized with dynamic pressure
-- this gives better prediction of current draws at other airspeeds
-- airspeed sensor recommended
local airspeed_normalize = false
-- hard code wind to match SITL
-- should get exact return time estimates < +- 5 seconds
local SITL_wind = false
-- Read in required params
local value = param:get('AIRSPEED_CRUISE')
if value then
air_speed = value
else
error('LUA: get AIRSPEED_CRUISE failed')
end
value = param:get('AIRSPEED_MIN')
if value then
min_air_speed = value
else
error('LUA: get AIRSPEED_MIN failed')
end
min_ground_speed = param:get('MIN_GROUNDSPEED')
if not min_groundspeed then
error('LUA: get MIN_GROUNDSPEED failed')
end
max_bank_angle = param:get('ROLL_LIMIT_DEG')
if not max_bank_angle then
error('LUA: get ROLL_LIMIT_DEG failed')
end
-- https://en.wikipedia.org/wiki/Standard_rate_turn#Radius_of_turn_formula
-- the radius is equal to the circumference per 1 radian
local turn_rad = (air_speed^2) / (9.81 * math.tan(math.rad(max_bank_angle)))
-- Read the radius we expect to circle at when we get home
local home_reached_rad
value = param:get('RTL_RADIUS')
if value then
value = math.abs(value)
if value > 0 then
home_reached_rad = math.abs(value) * 2
else
value = param:get('WP_LOITER_RAD')
if value then
home_reached_rad = math.abs(value) * 2
else
error('LUA: get WP_LOITER_RAD failed')
end
end
else
error('LUA: get RTL_RADIUS failed')
end
-- internal global variables
local return_start
local return_amps
local trigger_instance = batt_info[1][1]
local last_print = uint32_t()
local timer_start_time = uint32_t()
local timer_active = true
-- calculates the amount of time it will take for the vehicle to return home
-- returns 0 if there is no position, wind or home available
-- returns a negative number if it will take excessively long time, or is impossible
-- otherwise returns the time in seconds to get back
local function time_to_home()
local home = ahrs:get_home()
local position = ahrs:get_location()
local wind = ahrs:wind_estimate()
if home and position and wind then
local bearing = position:get_bearing(home)
-- wind is in NED, convert for readability
local wind_north = wind:x()
local wind_east = wind:y()
-- hard code wind for testing
if SITL_wind then
-- only safe to read from params at a high rate because we are in SITL
-- don't do this on a real vehicle
wind_speed = param:get('SIM_WIND_SPD')
wind_dir = param:get('SIM_WIND_DIR')
if wind_speed and wind_dir then
wind_dir = math.rad(wind_dir)
wind_north = -math.cos(wind_dir) * wind_speed
wind_east = -math.sin(wind_dir) * wind_speed
else
error('Could not read SITL wind')
end
end
--gcs:send_text(0, string.format("Wind: north %0.2f, east %0.2f",wind_north,wind_east))
-- rotate the wind vector inline with the home bearing
local tail_wind = math.sin(bearing) * wind_east + math.cos(bearing) * wind_north
local cross_wind = math.cos(bearing) * wind_east + math.sin(bearing) * wind_north -- left to right
-- we can't get home
if math.abs(cross_wind) > air_speed then
return -1, air_speed -- FIXME: this should really be infinity
end
-- calculate the crab angle required to cancel out the cross wind
local crab_angle = math.asin(-cross_wind / air_speed)
-- the resulting speed in the desired direction
local home_airspeed = air_speed * math.cos(crab_angle)
local effective_speed = home_airspeed + tail_wind
-- Estimate the extra distance required to turn
local yaw = ahrs:get_yaw()
-- this is the estimated angle we have to turn to be at the home bearing and crab angle
local turn_angle_rad = bearing - crab_angle - yaw
-- wrap to +- PI
if turn_angle_rad < math.rad(-180) then
turn_angle_rad = turn_angle_rad + math.rad(360)
elseif turn_angle_rad > math.rad(180) then
turn_angle_rad = turn_angle_rad - math.rad(360)
end
--gcs:send_text(0, "turn " .. tostring(math.deg(turn_angle_rad)) .. " deg")
-- Take into account min ground speed and resulting increased RTL airspeed
local return_air_speed = air_speed
if min_ground_speed > 0 and effective_speed < min_ground_speed then
-- we travel home at the min ground speed
effective_speed = min_ground_speed
-- work out the resulting airspeed
return_air_speed = math.sqrt((effective_speed-tail_wind)^2 + cross_wind^2)
end
-- distance to travel over ground speed + turn circumference over airspeed
return (position:get_distance(home) / effective_speed) + (math.abs(turn_angle_rad*turn_rad) / air_speed), return_air_speed
end
return 0, air_speed -- nothing useful available
end
-- idle function
function idle()
-- if disarmed and not flying reset for a potential second trigger
if not arming:is_armed() and not vehicle:get_likely_flying() then
return update, 100
end
return idle, 1000
end
-- time margin update function
function margin_update()
if not vehicle:get_likely_flying() then
-- no longer flying, idle function
return idle, 10000
end
-- display the remaining battery capacity on the triggered monitor
local capacity = battery:pack_capacity_mah(trigger_instance)
local consumed = battery:consumed_mah(trigger_instance)
if capacity and consumed then
gcs:send_text(0, string.format("Failsafe: %is margin elapsed %.2fmAh remain",margin, capacity - consumed))
end
-- idle function
return idle, 10000
end
-- this is an alternate update function that is simply used to track how long it will take to get home
-- it's really only used for debugging how the prediction rules are working
function track_return_time()
if not vehicle:get_likely_flying() then
-- no longer flying, idle function
return idle, 10000
end
local home = ahrs:get_home()
local position = ahrs:get_location()
if home and position then
local now = millis()
local home_dist = position:get_distance(home)
if home_dist < home_reached_rad then
-- calculate the extra time to fly the reached rad distance
local time_home = time_to_home()
local total_time = time_home + ((now-return_start)/1000)
-- display the remaining battery capacity on the triggered monitor
local capacity = battery:pack_capacity_mah(trigger_instance)
local consumed = battery:consumed_mah(trigger_instance)
if capacity and consumed then
-- estimate the extra capacity used for the reached rad distance
return_capacity = return_amps * time_home * (1000 / 60^2) -- convert from amp second's to mAh
gcs:send_text(0, "Failsafe: RTL took " .. tostring(total_time) .. string.format("s, %.2fmAh remain", capacity - consumed - return_capacity) )
if margin > 0 then
return margin_update, margin*1000
end
else
gcs:send_text(0, "Failsafe: RTL took " .. tostring(total_time) .. " s")
end
-- idle function
return idle, 10000
end
-- print updates tracking progress
local return_time = time_to_home()
local total_time = return_time + ((now-return_start)/1000)
if last_print + (print_time * 1000) < now and print_time > 0 then
last_print = now
if (return_time < 0) then
gcs:send_text(6, "Failsafe: ground speed low can not get home")
elseif (return_time > 0) then
-- cannot get string.format() to work with total time, wrong variable type? ie not %f or %i?
gcs:send_text(0, "Failsafe: Estimated " .. tostring(total_time) .. string.format("s, %.0fs remain", return_time) )
end
end
logger:write('SFSC','total_return_time,remaining_return_time','If','ss','--',total_time,return_time)
end
return track_return_time, 100
end
-- the main update function that is used to decide when we should do a failsafe
function update()
local now = millis();
-- check armed
if not arming:is_armed() then
--gcs:send_text(0, "Failsafe: disabled: not armed")
timer_start_time = now
timer_active = true
return update, 100
end
-- check flying
if not vehicle:get_likely_flying() then
--gcs:send_text(0, "Failsafe: disabled: not flying")
timer_start_time = now
timer_active = true
return update, 100
end
-- check mode
local current_mode = vehicle:get_mode()
if current_mode >= 17 then
--gcs:send_text(0, "Failsafe: disabled: Q mode")
timer_start_time = now
timer_active = true
return update, 100
end
-- check altitude
if alt_min ~= 0 then
local dist = ahrs:get_relative_position_NED_home()
if not dist or -1*dist:z() < alt_min then
--gcs:send_text(0, "Failsafe: disabled: low alt")
timer_start_time = now
timer_active = true
return update, 100
end
end
-- check timer
if now - timer_start_time < (min_flying_time * 1000) then
--gcs:send_text(0, "Failsafe: disabled: timer")
return update, 100
end
-- notify that we have started
if timer_active then
gcs:send_text(0, "Smart Battery RTL started monitoring")
timer_active = false
end
-- check airspeed
local air_speed_in = ahrs:airspeed_estimate()
if not air_speed_in then
error("Could not read airspeed")
end
if air_speed_in < min_air_speed * 0.75 then
-- we are not flying fast enough, skip but don't reset the timer
return update, 100
end
local min_remaining_time = 86400 -- 24 hours
-- find the return time and airspeed
local return_time, return_airspeed = time_to_home()
-- default to no normalization
local q = 1
local return_q = 1
-- normalize current with dynamic pressure
if airspeed_normalize then
-- we could probably just use air speed^2
local press = baro:get_pressure()
local temp = baro:get_external_temperature() + 273.2 -- convert deg centigrade to kelvin
local density = press / (temp * 287.058) -- calculate the air density, ideal gas law, constant is (R) specific gas constant for air
q = 0.5 * density * air_speed_in^2
return_q = 0.5 * density * return_airspeed^2 -- we could estimate the change in density also, but will be negligible
end
logger:write('SFSA','return_time,return_airspeed,Q,return_Q','ffff','snPP','----',return_time,return_airspeed,q,return_q)
for i = 1, #batt_info do
local instance, norm_filtered_amps, rated_capacity_mah = table.unpack(batt_info[i])
local amps = battery:current_amps(instance)
local consumed_mah = battery:consumed_mah(instance)
if amps and consumed_mah then
local norm_amps = amps / q
-- update all the current consumption rates
norm_filtered_amps = (norm_filtered_amps * filter) + (norm_amps * (1.0 - filter))
batt_info[i][2] = norm_filtered_amps
-- calculate the estimated return amps, estimate the return current if we were to fly at a different airspeed
return_amps = norm_filtered_amps * return_q
local remaining_capacity = (rated_capacity_mah - consumed_mah) * 3.6 -- amp seconds (60^2 / 1000)
local remaining_time = remaining_capacity / return_amps
local buffer_time = remaining_time - ((return_time * time_SF) + margin)
logger:write('SFSB','Instance,current,rem_cap,rem_time,buffer','Bffff','#Aiss','--C--',i-1,return_amps,remaining_capacity,remaining_time,buffer_time)
if (return_time < 0) or buffer_time < 0 then
if return_time < 0 then
gcs:send_text(0, "Failsafe: ground speed low can not get home")
elseif #batt_info == 1 then
gcs:send_text(0, string.format("Failsafe: Estimated %.0fs to home", return_time))
else
trigger_instance = instance
gcs:send_text(0, string.format("Failsafe: Estimated %.0fs to home, instance %i", return_time, instance))
end
last_print = now
-- FIXME: We need more insight into what the vehicles already doing. IE don't trigger RTL if we are already landing
vehicle:set_mode(11) -- plane RTL FIXME: we need a set of enums defined for the vehicles
-- swap to tracking the time rather then re trigger
return_start = now
-- Print the return distance
--[[local home = ahrs:get_home()
local position = ahrs:get_location()
if home and position then
return_distance = position:get_distance(home)
end
gcs:send_text(0, string.format("Failsafe: %.0f m to home", return_distance))]]
-- print the current draw we estimate
--gcs:send_text(0, string.format("Failsafe: %.2fa", return_amps))
return track_return_time, 100
end
min_remaining_time = math.min(min_remaining_time, buffer_time)
end
end
-- print updates tracking progress
if last_print + (print_time * 1000) < now and print_time > 0 then
last_print = now
gcs:send_text(6, string.format("%.0f seconds of flight remaining before RTL", min_remaining_time))
end
return update, 100
end
-- validate that all the expected monitors have current monitoring capability, and fetch initial values
for i = 1, #batt_info do
-- check that the instance exists
local instance = batt_info[i][1]
if instance > battery:num_instances() then
error("Battery " .. instance .. " does not exist")
end
-- check that we can actually read current from the instance
if not battery:current_amps(instance) then
error("Battery " .. instance .. " does not support current monitoring")
end
-- store the pack capacity for later use, it's assumed to never change mid flight
-- subtract the capacity we want remaining when we get home
local rated_cap = battery:pack_capacity_mah(instance)
if rated_cap then
-- read in the critical MAH
local param_string = 'BATT' .. tostring(instance + 1) .. '_CRT_MAH'
if instance == 0 then
param_string = 'BATT_CRT_MAH'
end
value = param:get(param_string)
if not value then
error('LUA: get '.. param_string .. ' failed')
end
batt_info[i][3] = rated_cap - (batt_info[i][4] + value)
else
error("Battery " .. instance .. " does not support current monitoring")
end
end
return update, 100