mirror of https://github.com/ArduPilot/ardupilot
260 lines
6.9 KiB
Plaintext
260 lines
6.9 KiB
Plaintext
|
|
#define ARM_DELAY 10
|
|
#define DISARM_DELAY 10
|
|
|
|
void arm_motors()
|
|
{
|
|
static byte arming_counter;
|
|
|
|
// Arm motor output : Throttle down and full yaw right for more than 2 seconds
|
|
if (rc_3.control_in == 0){
|
|
if (rc_4.control_in > 2700) {
|
|
if (arming_counter > ARM_DELAY) {
|
|
motor_armed = true;
|
|
} else{
|
|
arming_counter++;
|
|
}
|
|
}else if (rc_4.control_in < -2700) {
|
|
if (arming_counter > DISARM_DELAY){
|
|
motor_armed = false;
|
|
}else{
|
|
arming_counter++;
|
|
}
|
|
}else{
|
|
arming_counter = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
/*****************************************
|
|
* Set the flight control servos based on the current calculated values
|
|
*****************************************/
|
|
void
|
|
set_servos_4()
|
|
{
|
|
static byte num;
|
|
static byte counteri;
|
|
|
|
// Quadcopter mix
|
|
if (motor_armed == true && motor_auto_safe == true) {
|
|
int out_min = rc_3.radio_min;
|
|
|
|
// Throttle is 0 to 1000 only
|
|
rc_3.servo_out = constrain(rc_3.servo_out, 0, 1000);
|
|
|
|
if(rc_3.servo_out > 0)
|
|
out_min = rc_3.radio_min + 50;
|
|
|
|
//Serial.printf("out: %d %d %d %d\t\t", rc_1.servo_out, rc_2.servo_out, rc_3.servo_out, rc_4.servo_out);
|
|
|
|
// creates the radio_out and pwm_out values
|
|
rc_1.calc_pwm();
|
|
rc_2.calc_pwm();
|
|
rc_3.calc_pwm();
|
|
rc_4.calc_pwm();
|
|
|
|
//Serial.printf("out: %d %d %d %d\n", rc_1.radio_out, rc_2.radio_out, rc_3.radio_out, rc_4.radio_out);
|
|
//Serial.printf("yaw: %d ", rc_4.radio_out);
|
|
|
|
if(frame_type == PLUS_FRAME){
|
|
|
|
motor_out[CH_1] = rc_3.radio_out - rc_1.pwm_out;
|
|
motor_out[CH_2] = rc_3.radio_out + rc_1.pwm_out;
|
|
motor_out[CH_3] = rc_3.radio_out + rc_2.pwm_out;
|
|
motor_out[CH_4] = rc_3.radio_out - rc_2.pwm_out;
|
|
|
|
motor_out[CH_1] += rc_4.pwm_out; // CCW
|
|
motor_out[CH_2] += rc_4.pwm_out; // CCW
|
|
motor_out[CH_3] -= rc_4.pwm_out; // CW
|
|
motor_out[CH_4] -= rc_4.pwm_out; // CW
|
|
|
|
|
|
}else if(frame_type == X_FRAME){
|
|
|
|
int roll_out = rc_1.pwm_out / 2;
|
|
int pitch_out = rc_2.pwm_out / 2;
|
|
|
|
motor_out[CH_3] = rc_3.radio_out + roll_out + pitch_out;
|
|
motor_out[CH_2] = rc_3.radio_out + roll_out - pitch_out;
|
|
|
|
motor_out[CH_1] = rc_3.radio_out - roll_out + pitch_out;
|
|
motor_out[CH_4] = rc_3.radio_out - roll_out - pitch_out;
|
|
|
|
//Serial.printf("\tb4: %d %d %d %d ", motor_out[CH_1], motor_out[CH_2], motor_out[CH_3], motor_out[CH_4]);
|
|
|
|
motor_out[CH_1] += rc_4.pwm_out; // CCW
|
|
motor_out[CH_2] += rc_4.pwm_out; // CCW
|
|
motor_out[CH_3] -= rc_4.pwm_out; // CW
|
|
motor_out[CH_4] -= rc_4.pwm_out; // CW
|
|
|
|
//Serial.printf("\tl8r: %d %d %d %d\n", motor_out[CH_1], motor_out[CH_2], motor_out[CH_3], motor_out[CH_4]);
|
|
|
|
}else if(frame_type == TRI_FRAME){
|
|
|
|
// Tri-copter power distribution
|
|
|
|
int roll_out = (float)rc_1.pwm_out * .866;
|
|
int pitch_out = rc_2.pwm_out / 2;
|
|
|
|
// front two motors
|
|
motor_out[CH_2] = rc_3.radio_out + roll_out + pitch_out;
|
|
motor_out[CH_1] = rc_3.radio_out - roll_out + pitch_out;
|
|
|
|
// rear motors
|
|
motor_out[CH_4] = rc_3.radio_out - rc_2.pwm_out;
|
|
|
|
// servo Yaw
|
|
APM_RC.OutputCh(CH_7, rc_4.radio_out);
|
|
|
|
|
|
}else if (frame_type == HEXA_FRAME) {
|
|
|
|
int roll_out = (float)rc_1.pwm_out * .866;
|
|
int pitch_out = rc_2.pwm_out / 2;
|
|
|
|
//left side
|
|
motor_out[CH_2] = rc_3.radio_out + rc_1.pwm_out; // CCW
|
|
motor_out[CH_3] = rc_3.radio_out + roll_out + pitch_out; // CW
|
|
motor_out[CH_8] = rc_3.radio_out + roll_out - pitch_out; // CW
|
|
|
|
//right side
|
|
motor_out[CH_1] = rc_3.radio_out - rc_1.pwm_out; // CW
|
|
motor_out[CH_7] = rc_3.radio_out - roll_out + pitch_out; // CCW
|
|
motor_out[CH_4] = rc_3.radio_out - roll_out - pitch_out; // CCW
|
|
|
|
motor_out[CH_7] += rc_4.pwm_out; // CCW
|
|
motor_out[CH_2] += rc_4.pwm_out; // CCW
|
|
motor_out[CH_4] += rc_4.pwm_out; // CCW
|
|
|
|
motor_out[CH_3] -= rc_4.pwm_out; // CW
|
|
motor_out[CH_1] -= rc_4.pwm_out; // CW
|
|
motor_out[CH_8] -= rc_4.pwm_out; // CW
|
|
|
|
} else {
|
|
|
|
Serial.print("frame error");
|
|
|
|
}
|
|
|
|
|
|
// limit output so motors don't stop
|
|
motor_out[CH_1] = constrain(motor_out[CH_1], out_min, rc_3.radio_max);
|
|
motor_out[CH_2] = constrain(motor_out[CH_2], out_min, rc_3.radio_max);
|
|
motor_out[CH_3] = constrain(motor_out[CH_3], out_min, rc_3.radio_max);
|
|
motor_out[CH_4] = constrain(motor_out[CH_4], out_min, rc_3.radio_max);
|
|
|
|
if (frame_type == HEXA_FRAME) {
|
|
motor_out[CH_7] = constrain(motor_out[CH_7], out_min, rc_3.radio_max);
|
|
motor_out[CH_8] = constrain(motor_out[CH_8], out_min, rc_3.radio_max);
|
|
}
|
|
|
|
num++;
|
|
if (num > 10){
|
|
num = 0;
|
|
//Serial.print("!");
|
|
//debugging with Channel 6
|
|
|
|
//pid_baro_throttle.kD((float)rc_6.control_in / 1000); // 0 to 1
|
|
|
|
/*
|
|
// ROLL and PITCH
|
|
// make sure you init_pids() after changing the kP
|
|
pid_stabilize_roll.kP((float)rc_6.control_in / 1000);
|
|
init_pids();
|
|
//Serial.print("kP: ");
|
|
//Serial.println(pid_stabilize_roll.kP(),3);
|
|
//*/
|
|
|
|
/*
|
|
// YAW
|
|
// make sure you init_pids() after changing the kP
|
|
pid_yaw.kP((float)rc_6.control_in / 1000);
|
|
init_pids();
|
|
//*/
|
|
|
|
/*
|
|
write_int(motor_out[CH_1]);
|
|
write_int(motor_out[CH_2]);
|
|
write_int(motor_out[CH_3]);
|
|
write_int(motor_out[CH_4]);
|
|
write_int((int)(dcm.roll_sensor / 100));
|
|
write_int((int)(dcm.pitch_sensor / 100));
|
|
write_int((int)(dcm.yaw_sensor / 100));
|
|
write_int((int)(nav_yaw / 100));
|
|
|
|
write_int((int)nav_lat);
|
|
write_int((int)nav_lon);
|
|
|
|
write_int((int)nav_roll);
|
|
write_int((int)nav_pitch);
|
|
|
|
flush(10);
|
|
//*/
|
|
}
|
|
|
|
// Send commands to motors
|
|
if(rc_3.servo_out > 0){
|
|
|
|
APM_RC.OutputCh(CH_1, motor_out[CH_1]);
|
|
APM_RC.OutputCh(CH_2, motor_out[CH_2]);
|
|
APM_RC.OutputCh(CH_3, motor_out[CH_3]);
|
|
APM_RC.OutputCh(CH_4, motor_out[CH_4]);
|
|
// InstantPWM
|
|
APM_RC.Force_Out0_Out1();
|
|
APM_RC.Force_Out2_Out3();
|
|
|
|
if (frame_type == HEXA_FRAME) {
|
|
APM_RC.OutputCh(CH_7, motor_out[CH_7]);
|
|
APM_RC.OutputCh(CH_8, motor_out[CH_8]);
|
|
APM_RC.Force_Out6_Out7();
|
|
}
|
|
|
|
}else{
|
|
|
|
APM_RC.OutputCh(CH_1, rc_3.radio_min);
|
|
APM_RC.OutputCh(CH_2, rc_3.radio_min);
|
|
APM_RC.OutputCh(CH_3, rc_3.radio_min);
|
|
APM_RC.OutputCh(CH_4, rc_3.radio_min);
|
|
// InstantPWM
|
|
APM_RC.Force_Out0_Out1();
|
|
APM_RC.Force_Out2_Out3();
|
|
|
|
if (frame_type == HEXA_FRAME) {
|
|
APM_RC.OutputCh(CH_7, rc_3.radio_min);
|
|
APM_RC.OutputCh(CH_8, rc_3.radio_min);
|
|
APM_RC.Force_Out6_Out7();
|
|
}
|
|
}
|
|
|
|
}else{
|
|
// our motor is unarmed, we're on the ground
|
|
reset_I();
|
|
|
|
if(rc_3.control_in > 0){
|
|
// we have pushed up the throttle
|
|
// remove safety
|
|
motor_auto_safe = true;
|
|
}
|
|
|
|
// Send commands to motors
|
|
APM_RC.OutputCh(CH_1, rc_3.radio_min);
|
|
APM_RC.OutputCh(CH_2, rc_3.radio_min);
|
|
APM_RC.OutputCh(CH_3, rc_3.radio_min);
|
|
APM_RC.OutputCh(CH_4, rc_3.radio_min);
|
|
|
|
if (frame_type == HEXA_FRAME) {
|
|
APM_RC.OutputCh(CH_7, rc_3.radio_min);
|
|
APM_RC.OutputCh(CH_8, rc_3.radio_min);
|
|
}
|
|
|
|
// reset I terms of PID controls
|
|
reset_I();
|
|
|
|
// Initialize yaw command to actual yaw when throttle is down...
|
|
rc_4.control_in = ToDeg(yaw);
|
|
}
|
|
}
|