ardupilot/libraries/AP_Math/matrix3.h

231 lines
6.1 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Copyright 2010 Michael Smith, all rights reserved.
// Inspired by:
/****************************************
* 3D Vector Classes
* By Bill Perone (billperone@yahoo.com)
*/
//
// 3x3 matrix implementation.
//
// Note that the matrix is organised in row-normal form (the same as
// applies to array indexing).
//
// In addition to the template, this header defines the following types:
//
// Matrix3i 3x3 matrix of signed integers
// Matrix3ui 3x3 matrix of unsigned integers
// Matrix3l 3x3 matrix of signed longs
// Matrix3ul 3x3 matrix of unsigned longs
// Matrix3f 3x3 matrix of signed floats
//
#ifndef MATRIX3_H
#define MATRIX3_H
#include "vector3.h"
// 3x3 matrix with elements of type T
template <typename T>
class Matrix3 {
public:
// Vectors comprising the rows of the matrix
Vector3<T> a, b, c;
// trivial ctor
// note that the Vector3 ctor will zero the vector elements
Matrix3<T>() {
}
// setting ctor
Matrix3<T>(const Vector3<T> a0, const Vector3<T> b0, const Vector3<T> c0) : a(a0), b(b0), c(c0) {
}
// setting ctor
Matrix3<T>(const T ax, const T ay, const T az, const T bx, const T by, const T bz, const T cx, const T cy, const T cz) : a(ax,ay,az), b(bx,by,bz), c(cx,cy,cz) {
}
// function call operator
void operator () (const Vector3<T> a0, const Vector3<T> b0, const Vector3<T> c0)
{
a = a0; b = b0; c = c0;
}
// test for equality
bool operator == (const Matrix3<T> &m)
{
return (a==m.a && b==m.b && c==m.c);
}
// test for inequality
bool operator != (const Matrix3<T> &m)
{
return (a!=m.a || b!=m.b || c!=m.c);
}
// negation
Matrix3<T> operator - (void) const
{
return Matrix3<T>(-a,-b,-c);
}
// addition
Matrix3<T> operator + (const Matrix3<T> &m) const
{
return Matrix3<T>(a+m.a, b+m.b, c+m.c);
}
Matrix3<T> &operator += (const Matrix3<T> &m)
{
return *this = *this + m;
}
// subtraction
Matrix3<T> operator - (const Matrix3<T> &m) const
{
return Matrix3<T>(a-m.a, b-m.b, c-m.c);
}
Matrix3<T> &operator -= (const Matrix3<T> &m)
{
return *this = *this - m;
}
// uniform scaling
Matrix3<T> operator * (const T num) const
{
return Matrix3<T>(a*num, b*num, c*num);
}
Matrix3<T> &operator *= (const T num)
{
return *this = *this * num;
}
Matrix3<T> operator / (const T num) const
{
return Matrix3<T>(a/num, b/num, c/num);
}
Matrix3<T> &operator /= (const T num)
{
return *this = *this / num;
}
// allow a Matrix3 to be used as an array of vectors, 0 indexed
Vector3<T> & operator[](uint8_t i) {
Vector3<T> *_v = &a;
#if MATH_CHECK_INDEXES
assert(i >= 0 && i < 3);
#endif
return _v[i];
}
const Vector3<T> & operator[](uint8_t i) const {
const Vector3<T> *_v = &a;
#if MATH_CHECK_INDEXES
assert(i >= 0 && i < 3);
#endif
return _v[i];
}
// multiplication by a vector
Vector3<T> operator *(const Vector3<T> &v) const;
// multiplication of transpose by a vector
Vector3<T> mul_transpose(const Vector3<T> &v) const;
// multiplication by a vector giving a Vector2 result (XY components)
Vector2<T> mulXY(const Vector3<T> &v) const;
// extract x column
Vector3<T> colx(void) const
{
return Vector3f(a.x, b.x, c.x);
}
// extract y column
Vector3<T> coly(void) const
{
return Vector3f(a.y, b.y, c.y);
}
// extract z column
Vector3<T> colz(void) const
{
return Vector3f(a.z, b.z, c.z);
}
// multiplication by another Matrix3<T>
Matrix3<T> operator *(const Matrix3<T> &m) const;
Matrix3<T> &operator *=(const Matrix3<T> &m)
{
return *this = *this * m;
}
// transpose the matrix
Matrix3<T> transposed(void) const;
void transpose(void)
{
*this = transposed();
}
// zero the matrix
void zero(void);
// setup the identity matrix
void identity(void) {
a.x = b.y = c.z = 1;
a.y = a.z = 0;
b.x = b.z = 0;
c.x = c.y = 0;
}
// check if any elements are NAN
bool is_nan(void)
{
return a.is_nan() || b.is_nan() || c.is_nan();
}
// create a rotation matrix from Euler angles
void from_euler(float roll, float pitch, float yaw);
// create eulers from a rotation matrix
void to_euler(float *roll, float *pitch, float *yaw);
// apply an additional rotation from a body frame gyro vector
// to a rotation matrix.
void rotate(const Vector3<T> &g);
// apply an additional rotation from a body frame gyro vector
// to a rotation matrix but only use X, Y elements from gyro vector
void rotateXY(const Vector3<T> &g);
// apply an additional inverse rotation to a rotation matrix but
// only use X, Y elements from rotation vector
void rotateXYinv(const Vector3<T> &g);
};
typedef Matrix3<int16_t> Matrix3i;
typedef Matrix3<uint16_t> Matrix3ui;
typedef Matrix3<int32_t> Matrix3l;
typedef Matrix3<uint32_t> Matrix3ul;
typedef Matrix3<float> Matrix3f;
#endif // MATRIX3_H