ardupilot/libraries/AP_PiccoloCAN/piccolo_protocol/ESCDefines.c
2019-12-22 09:48:40 +11:00

408 lines
17 KiB
C

// ESCDefines.c was generated by ProtoGen version 2.18.c
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "ESCDefines.h"
#include "fielddecode.h"
#include "fieldencode.h"
#include "scaleddecode.h"
#include "scaledencode.h"
/*!
* \brief Encode a ESC_StatusBits_t structure into a byte array
*
* The *status* of the ESC is represented using these status bits. ESC system
* functionality can be quickly determined using these bits
* \param _pg_data points to the byte array to add encoded data to
* \param _pg_bytecount points to the starting location in the byte array, and will be incremented by the number of encoded bytes.
* \param _pg_user is the data to encode in the byte array
*/
void encodeESC_StatusBits_t(uint8_t* _pg_data, int* _pg_bytecount, const ESC_StatusBits_t* _pg_user)
{
int _pg_byteindex = *_pg_bytecount;
// 1 = Hardware inhibit is active (ESC is disabled)
_pg_data[_pg_byteindex] = (uint8_t)_pg_user->hwInhibit << 7;
// 1 = Software inhibit is active (ESC is disabled)
_pg_data[_pg_byteindex] |= (uint8_t)_pg_user->swInhibit << 6;
// 0 = Active Freewheeling is not enabled, 1 = Active Freewheeling is enabled
_pg_data[_pg_byteindex] |= (uint8_t)_pg_user->afwEnabled << 5;
// 0 = Motor direction is FORWARDS, 1= Motor direction is REVERSE
_pg_data[_pg_byteindex] |= (uint8_t)_pg_user->direction << 4;
// Set if the ESC command timeout period has elapsed (and the ESC is in STANDBY mode)
_pg_data[_pg_byteindex] |= (uint8_t)_pg_user->timeout << 3;
// 1 = in starting mode (0 = stopped or running)
_pg_data[_pg_byteindex] |= (uint8_t)_pg_user->starting << 2;
// 0 = most recent command from CAN, 1 = most recent command from PWM
_pg_data[_pg_byteindex] |= (uint8_t)_pg_user->commandSource << 1;
// ESC is running
_pg_data[_pg_byteindex] |= (uint8_t)_pg_user->running;
_pg_byteindex += 1; // close bit field
*_pg_bytecount = _pg_byteindex;
}// encodeESC_StatusBits_t
/*!
* \brief Decode a ESC_StatusBits_t structure from a byte array
*
* The *status* of the ESC is represented using these status bits. ESC system
* functionality can be quickly determined using these bits
* \param _pg_data points to the byte array to decoded data from
* \param _pg_bytecount points to the starting location in the byte array, and will be incremented by the number of bytes decoded
* \param _pg_user is the data to decode from the byte array
* \return 1 if the data are decoded, else 0. If 0 is returned _pg_bytecount will not be updated.
*/
int decodeESC_StatusBits_t(const uint8_t* _pg_data, int* _pg_bytecount, ESC_StatusBits_t* _pg_user)
{
int _pg_byteindex = *_pg_bytecount;
// 1 = Hardware inhibit is active (ESC is disabled)
_pg_user->hwInhibit = (_pg_data[_pg_byteindex] >> 7);
// 1 = Software inhibit is active (ESC is disabled)
_pg_user->swInhibit = ((_pg_data[_pg_byteindex] >> 6) & 0x1);
// 0 = Active Freewheeling is not enabled, 1 = Active Freewheeling is enabled
_pg_user->afwEnabled = ((_pg_data[_pg_byteindex] >> 5) & 0x1);
// 0 = Motor direction is FORWARDS, 1= Motor direction is REVERSE
_pg_user->direction = ((_pg_data[_pg_byteindex] >> 4) & 0x1);
// Set if the ESC command timeout period has elapsed (and the ESC is in STANDBY mode)
_pg_user->timeout = ((_pg_data[_pg_byteindex] >> 3) & 0x1);
// 1 = in starting mode (0 = stopped or running)
_pg_user->starting = ((_pg_data[_pg_byteindex] >> 2) & 0x1);
// 0 = most recent command from CAN, 1 = most recent command from PWM
_pg_user->commandSource = ((_pg_data[_pg_byteindex] >> 1) & 0x1);
// ESC is running
_pg_user->running = ((_pg_data[_pg_byteindex]) & 0x1);
_pg_byteindex += 1; // close bit field
*_pg_bytecount = _pg_byteindex;
return 1;
}// decodeESC_StatusBits_t
/*!
* \brief Encode a ESC_WarningBits_t structure into a byte array
*
* The *warning* bits enumerate various system warnings/errors of which the user
* (or user software) should be made aware. These *warning* bits are transmitted
* in the telemetry packets such that user software is aware of any these
* *warning* conditions and can poll the ESC for particular packets if any
* further information is needed. The ESC will continue to function in the case
* of a *warning* state
* \param _pg_data points to the byte array to add encoded data to
* \param _pg_bytecount points to the starting location in the byte array, and will be incremented by the number of encoded bytes.
* \param _pg_user is the data to encode in the byte array
*/
void encodeESC_WarningBits_t(uint8_t* _pg_data, int* _pg_bytecount, const ESC_WarningBits_t* _pg_user)
{
int _pg_byteindex = *_pg_bytecount;
// Set if RPM signal is not detected
_pg_data[_pg_byteindex] = (uint8_t)_pg_user->noRPMSignal << 7;
// Set if the ESC motor speed exceeds the configured warning threshold
_pg_data[_pg_byteindex] |= (uint8_t)_pg_user->overspeed << 6;
// Set if the ESC motor current (positive or negative) exceeds the configured warning threshold
_pg_data[_pg_byteindex] |= (uint8_t)_pg_user->overcurrent << 5;
// Set if the internal ESC temperature is above the warning threshold
_pg_data[_pg_byteindex] |= (uint8_t)_pg_user->escTemperature << 4;
// Set if the motor temperature is above the warning threshold
_pg_data[_pg_byteindex] |= (uint8_t)_pg_user->motorTemperature << 3;
// Set if the input voltage is below the minimum threshold
_pg_data[_pg_byteindex] |= (uint8_t)_pg_user->undervoltage << 2;
// Set if the input voltage is above the maximum threshold
_pg_data[_pg_byteindex] |= (uint8_t)_pg_user->overvoltage << 1;
// Set if hardware PWM input is enabled but invalid
_pg_data[_pg_byteindex] |= (uint8_t)_pg_user->invalidPWMsignal;
_pg_byteindex += 1; // close bit field
*_pg_bytecount = _pg_byteindex;
}// encodeESC_WarningBits_t
/*!
* \brief Decode a ESC_WarningBits_t structure from a byte array
*
* The *warning* bits enumerate various system warnings/errors of which the user
* (or user software) should be made aware. These *warning* bits are transmitted
* in the telemetry packets such that user software is aware of any these
* *warning* conditions and can poll the ESC for particular packets if any
* further information is needed. The ESC will continue to function in the case
* of a *warning* state
* \param _pg_data points to the byte array to decoded data from
* \param _pg_bytecount points to the starting location in the byte array, and will be incremented by the number of bytes decoded
* \param _pg_user is the data to decode from the byte array
* \return 1 if the data are decoded, else 0. If 0 is returned _pg_bytecount will not be updated.
*/
int decodeESC_WarningBits_t(const uint8_t* _pg_data, int* _pg_bytecount, ESC_WarningBits_t* _pg_user)
{
int _pg_byteindex = *_pg_bytecount;
// Set if RPM signal is not detected
_pg_user->noRPMSignal = (_pg_data[_pg_byteindex] >> 7);
// Set if the ESC motor speed exceeds the configured warning threshold
_pg_user->overspeed = ((_pg_data[_pg_byteindex] >> 6) & 0x1);
// Set if the ESC motor current (positive or negative) exceeds the configured warning threshold
_pg_user->overcurrent = ((_pg_data[_pg_byteindex] >> 5) & 0x1);
// Set if the internal ESC temperature is above the warning threshold
_pg_user->escTemperature = ((_pg_data[_pg_byteindex] >> 4) & 0x1);
// Set if the motor temperature is above the warning threshold
_pg_user->motorTemperature = ((_pg_data[_pg_byteindex] >> 3) & 0x1);
// Set if the input voltage is below the minimum threshold
_pg_user->undervoltage = ((_pg_data[_pg_byteindex] >> 2) & 0x1);
// Set if the input voltage is above the maximum threshold
_pg_user->overvoltage = ((_pg_data[_pg_byteindex] >> 1) & 0x1);
// Set if hardware PWM input is enabled but invalid
_pg_user->invalidPWMsignal = ((_pg_data[_pg_byteindex]) & 0x1);
_pg_byteindex += 1; // close bit field
*_pg_bytecount = _pg_byteindex;
return 1;
}// decodeESC_WarningBits_t
/*!
* \brief Encode a ESC_ErrorBits_t structure into a byte array
*
* The *error* bits enumerate critical system errors that will cause the ESC to
* stop functioning until the error cases are alleviated
* \param _pg_data points to the byte array to add encoded data to
* \param _pg_bytecount points to the starting location in the byte array, and will be incremented by the number of encoded bytes.
* \param _pg_user is the data to encode in the byte array
*/
void encodeESC_ErrorBits_t(uint8_t* _pg_data, int* _pg_bytecount, const ESC_ErrorBits_t* _pg_user)
{
int _pg_byteindex = *_pg_bytecount;
// Set if communication link to the motor controller is lost
_pg_data[_pg_byteindex] = (uint8_t)_pg_user->linkError << 7;
// Set if the ESC has detected an overcurrent event and is actively folding back duty cycle
_pg_data[_pg_byteindex] |= (uint8_t)_pg_user->foldback << 6;
// Set if the settings checksum does not match the programmed values
_pg_data[_pg_byteindex] |= (uint8_t)_pg_user->settingsChecksum << 5;
// Set if the motor settings are invalid
_pg_data[_pg_byteindex] |= (uint8_t)_pg_user->motorSettings << 4;
// Reserved for future use
_pg_data[_pg_byteindex] |= (uint8_t)_pg_user->reservedD << 3;
// Reserved for future use
_pg_data[_pg_byteindex] |= (uint8_t)_pg_user->reservedE << 2;
// Reserved for future use
_pg_data[_pg_byteindex] |= (uint8_t)_pg_user->reservedF << 1;
// Reserved for future use
_pg_data[_pg_byteindex] |= (uint8_t)_pg_user->reservedG;
_pg_byteindex += 1; // close bit field
*_pg_bytecount = _pg_byteindex;
}// encodeESC_ErrorBits_t
/*!
* \brief Decode a ESC_ErrorBits_t structure from a byte array
*
* The *error* bits enumerate critical system errors that will cause the ESC to
* stop functioning until the error cases are alleviated
* \param _pg_data points to the byte array to decoded data from
* \param _pg_bytecount points to the starting location in the byte array, and will be incremented by the number of bytes decoded
* \param _pg_user is the data to decode from the byte array
* \return 1 if the data are decoded, else 0. If 0 is returned _pg_bytecount will not be updated.
*/
int decodeESC_ErrorBits_t(const uint8_t* _pg_data, int* _pg_bytecount, ESC_ErrorBits_t* _pg_user)
{
int _pg_byteindex = *_pg_bytecount;
// Set if communication link to the motor controller is lost
_pg_user->linkError = (_pg_data[_pg_byteindex] >> 7);
// Set if the ESC has detected an overcurrent event and is actively folding back duty cycle
_pg_user->foldback = ((_pg_data[_pg_byteindex] >> 6) & 0x1);
// Set if the settings checksum does not match the programmed values
_pg_user->settingsChecksum = ((_pg_data[_pg_byteindex] >> 5) & 0x1);
// Set if the motor settings are invalid
_pg_user->motorSettings = ((_pg_data[_pg_byteindex] >> 4) & 0x1);
// Reserved for future use
_pg_user->reservedD = ((_pg_data[_pg_byteindex] >> 3) & 0x1);
// Reserved for future use
_pg_user->reservedE = ((_pg_data[_pg_byteindex] >> 2) & 0x1);
// Reserved for future use
_pg_user->reservedF = ((_pg_data[_pg_byteindex] >> 1) & 0x1);
// Reserved for future use
_pg_user->reservedG = ((_pg_data[_pg_byteindex]) & 0x1);
_pg_byteindex += 1; // close bit field
*_pg_bytecount = _pg_byteindex;
return 1;
}// decodeESC_ErrorBits_t
/*!
* \brief Encode a ESC_TelemetryPackets_t structure into a byte array
*
* These bits are used to determine which packets are automatically transmitted
* as telemetry data by the ESC. Only the packets described here can be
* configured as telemetry packets
* \param _pg_data points to the byte array to add encoded data to
* \param _pg_bytecount points to the starting location in the byte array, and will be incremented by the number of encoded bytes.
* \param _pg_user is the data to encode in the byte array
*/
void encodeESC_TelemetryPackets_t(uint8_t* _pg_data, int* _pg_bytecount, const ESC_TelemetryPackets_t* _pg_user)
{
int _pg_byteindex = *_pg_bytecount;
// If this bit is set, the STATUS_A packet will be transmitted at the configured rate
_pg_data[_pg_byteindex] = (uint8_t)_pg_user->statusA << 7;
// If this bit is set, the STATUS_B packet will be transmitted at the configured rate
_pg_data[_pg_byteindex] |= (uint8_t)_pg_user->statusB << 6;
// If this bit is set, the STATUS_C packet will be transmitted at the configured rate
_pg_data[_pg_byteindex] |= (uint8_t)_pg_user->statusC << 5;
// If this bit is set, the ACCELEROMETER packet will be transmitted at the configured rate
_pg_data[_pg_byteindex] |= (uint8_t)_pg_user->accelerometer << 4;
// If this bit is set, the STATUS_D packet will be transmitted at the configured rate
_pg_data[_pg_byteindex] |= (uint8_t)_pg_user->statusD << 3;
// Reserved for future use
_pg_data[_pg_byteindex] |= (uint8_t)_pg_user->reservedB << 2;
// If this bit is set, any STATUS_x packets selected for telemetry will be mirrored on the Piccolo Downlink packet group (0x14)
_pg_data[_pg_byteindex] |= (uint8_t)_pg_user->piccoloDownlink << 1;
// Reserved for future use
_pg_data[_pg_byteindex] |= (uint8_t)_pg_user->reservedD;
_pg_byteindex += 1; // close bit field
*_pg_bytecount = _pg_byteindex;
}// encodeESC_TelemetryPackets_t
/*!
* \brief Decode a ESC_TelemetryPackets_t structure from a byte array
*
* These bits are used to determine which packets are automatically transmitted
* as telemetry data by the ESC. Only the packets described here can be
* configured as telemetry packets
* \param _pg_data points to the byte array to decoded data from
* \param _pg_bytecount points to the starting location in the byte array, and will be incremented by the number of bytes decoded
* \param _pg_user is the data to decode from the byte array
* \return 1 if the data are decoded, else 0. If 0 is returned _pg_bytecount will not be updated.
*/
int decodeESC_TelemetryPackets_t(const uint8_t* _pg_data, int* _pg_bytecount, ESC_TelemetryPackets_t* _pg_user)
{
int _pg_byteindex = *_pg_bytecount;
// If this bit is set, the STATUS_A packet will be transmitted at the configured rate
_pg_user->statusA = (_pg_data[_pg_byteindex] >> 7);
// If this bit is set, the STATUS_B packet will be transmitted at the configured rate
_pg_user->statusB = ((_pg_data[_pg_byteindex] >> 6) & 0x1);
// If this bit is set, the STATUS_C packet will be transmitted at the configured rate
_pg_user->statusC = ((_pg_data[_pg_byteindex] >> 5) & 0x1);
// If this bit is set, the ACCELEROMETER packet will be transmitted at the configured rate
_pg_user->accelerometer = ((_pg_data[_pg_byteindex] >> 4) & 0x1);
// If this bit is set, the STATUS_D packet will be transmitted at the configured rate
_pg_user->statusD = ((_pg_data[_pg_byteindex] >> 3) & 0x1);
// Reserved for future use
_pg_user->reservedB = ((_pg_data[_pg_byteindex] >> 2) & 0x1);
// If this bit is set, any STATUS_x packets selected for telemetry will be mirrored on the Piccolo Downlink packet group (0x14)
_pg_user->piccoloDownlink = ((_pg_data[_pg_byteindex] >> 1) & 0x1);
// Reserved for future use
_pg_user->reservedD = ((_pg_data[_pg_byteindex]) & 0x1);
_pg_byteindex += 1; // close bit field
*_pg_bytecount = _pg_byteindex;
return 1;
}// decodeESC_TelemetryPackets_t
/*!
* \brief Set a ESC_TelemetryPackets_t structure to initial values.
*
* Set a ESC_TelemetryPackets_t structure to initial values. Not all fields are set,
* only those which the protocol specifies.
* \param _pg_user is the structure whose data are set to initial values
*/
void initESC_TelemetryPackets_t(ESC_TelemetryPackets_t* _pg_user)
{
// If this bit is set, the STATUS_A packet will be transmitted at the configured rate
_pg_user->statusA = 1;
// If this bit is set, the STATUS_B packet will be transmitted at the configured rate
_pg_user->statusB = 1;
// If this bit is set, the STATUS_C packet will be transmitted at the configured rate
_pg_user->statusC = 1;
// If this bit is set, the ACCELEROMETER packet will be transmitted at the configured rate
_pg_user->accelerometer = 0;
}// initESC_TelemetryPackets_t
// end of ESCDefines.c