ardupilot/libraries/AP_Motors/AP_MotorsTailsitter.cpp

122 lines
4.1 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AP_MotorsTailsitter.cpp - ArduCopter motors library for tailsitters
*
*/
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include "AP_MotorsTailsitter.h"
#include <GCS_MAVLink/GCS.h>
extern const AP_HAL::HAL& hal;
#define SERVO_OUTPUT_RANGE 4500
#define THROTTLE_RANGE 100
// init
void AP_MotorsTailsitter::init(motor_frame_class frame_class, motor_frame_type frame_type)
{
// record successful initialisation if what we setup was the desired frame_class
_flags.initialised_ok = (frame_class == MOTOR_FRAME_TAILSITTER);
}
/// Constructor
AP_MotorsTailsitter::AP_MotorsTailsitter(uint16_t loop_rate, uint16_t speed_hz) :
AP_MotorsMulticopter(loop_rate, speed_hz)
{
SRV_Channels::set_rc_frequency(SRV_Channel::k_throttleLeft, speed_hz);
SRV_Channels::set_rc_frequency(SRV_Channel::k_throttleRight, speed_hz);
}
void AP_MotorsTailsitter::output_to_motors()
{
if (!_flags.initialised_ok) {
return;
}
float throttle_left = 0;
float throttle_right = 0;
switch (_spool_mode) {
case SHUT_DOWN:
_throttle = 0;
// set limits flags
limit.roll_pitch = true;
limit.yaw = true;
limit.throttle_lower = true;
limit.throttle_upper = true;
break;
case SPIN_WHEN_ARMED:
// sends output to motors when armed but not flying
_throttle = constrain_float(_spin_up_ratio, 0.0f, 1.0f) * _spin_min;
// set limits flags
limit.roll_pitch = true;
limit.yaw = true;
limit.throttle_lower = true;
limit.throttle_upper = true;
break;
case SPOOL_UP:
case THROTTLE_UNLIMITED:
case SPOOL_DOWN:
throttle_left = constrain_float(_throttle + _rudder*0.5, 0, 1);
throttle_right = constrain_float(_throttle - _rudder*0.5, 0, 1);
// initialize limits flags
limit.roll_pitch = false;
limit.yaw = false;
limit.throttle_lower = false;
limit.throttle_upper = false;
break;
}
// outputs are setup here, and written to the HAL by the plane servos loop
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, _aileron*SERVO_OUTPUT_RANGE);
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, _elevator*SERVO_OUTPUT_RANGE);
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, _rudder*SERVO_OUTPUT_RANGE);
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, _throttle*THROTTLE_RANGE);
// also support differential roll with twin motors
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleLeft, throttle_left*THROTTLE_RANGE);
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleRight, throttle_right*THROTTLE_RANGE);
#if APM_BUILD_TYPE(APM_BUILD_ArduCopter)
SRV_Channels::calc_pwm();
SRV_Channels::output_ch_all();
#endif
}
// calculate outputs to the motors
void AP_MotorsTailsitter::output_armed_stabilizing()
{
_aileron = -_yaw_in;
_elevator = _pitch_in;
_rudder = _roll_in;
_throttle = get_throttle();
// sanity check throttle is above zero and below current limited throttle
if (_throttle <= 0.0f) {
_throttle = 0.0f;
limit.throttle_lower = true;
}
if (_throttle >= _throttle_thrust_max) {
_throttle = _throttle_thrust_max;
limit.throttle_upper = true;
}
_throttle = constrain_float(_throttle, 0.1, 1);
}